The present work is focused on the improvement of an effective approach to tailor the acidity of silica alumina composite. SBA-15 was selected based on high surface area, uniform porosity and large mesopores. Modification of SBA-15 was performed to improve both Lewis and Brønsted acidities and hence catalyst activity. Therefore, introduction of alumina as a co-catalyst was carried out to enhance Lewis acid sites through its incorporation into the silica network. Evaporation impregnation method was evaluated for incorporation of aluminium to SBA-15 and materials with different SiO2/Al2O3 ratios were prepared. Acidity and morphological features of the materials were assessed using XRD, EDX, SEM, TEM, N2-physisorption, 27Al MAS-NMR and FTIR with pyridine. Brønsted acidity was attained by the introduction of sulfonic acid groups in the final catalyst via the post-synthesis grafting method. Therefore, the balanced Lewis and Brønsted acidities and proper porosity of modified SBA-15 led to its efficient performance in the conversion of glucose as a biomass-based model component to levulinic acid.

Acid sites modulation of siliceous-based mesoporous material by post synthesis methods

Cruciani G.
Investigation
;
2021

Abstract

The present work is focused on the improvement of an effective approach to tailor the acidity of silica alumina composite. SBA-15 was selected based on high surface area, uniform porosity and large mesopores. Modification of SBA-15 was performed to improve both Lewis and Brønsted acidities and hence catalyst activity. Therefore, introduction of alumina as a co-catalyst was carried out to enhance Lewis acid sites through its incorporation into the silica network. Evaporation impregnation method was evaluated for incorporation of aluminium to SBA-15 and materials with different SiO2/Al2O3 ratios were prepared. Acidity and morphological features of the materials were assessed using XRD, EDX, SEM, TEM, N2-physisorption, 27Al MAS-NMR and FTIR with pyridine. Brønsted acidity was attained by the introduction of sulfonic acid groups in the final catalyst via the post-synthesis grafting method. Therefore, the balanced Lewis and Brønsted acidities and proper porosity of modified SBA-15 led to its efficient performance in the conversion of glucose as a biomass-based model component to levulinic acid.
2021
Pizzolitto, C.; Ghedini, E.; Taghavi, S.; Menegazzo, F.; Cruciani, G.; Peurla, M.; Eranen, K.; Heinmaa, I.; Aho, A.; Kumar, N.; Murzin, D. Y.; Salmi, ...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1387181121005850-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.45 MB
Formato Adobe PDF
6.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2470141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact