Cardiovascular haemodynamics alters during posture changes and exposure to microgravity. Vascular auto-remodelling observed in subjects living in space environment causes them orthostatic intolerance when they return on Earth. In this study we modelled the human haemodynamics with focus on head and neck exposed to different hydrostatic pressures in supine, upright (head-up tilt), head-down tilt position, and microgravity environment by using a well-developed 1D-0D haemodynamic model. The model consists of two parts that simulates the arterial (1D) and brain-venous (0D) vascular tree. The cardiovascular system is built as a network of hydraulic resistances and capacitances to properly model physiological parameters like total peripheral resistance, and to calculate vascular pressure and the related flow rate at any branch of the tree. The model calculated 30.0 mmHg (30%), 7.1 mmHg (78%), 1.7 mmHg (38%) reduction in mean blood pressure, intracranial pressure and central venous pressure after posture change from supine to upright, respectively. The modelled brain drainage outflow percentage from internal jugular veins is 67% and 26% for supine and upright posture, while for head-down tilt and microgravity is 65% and 72%, respectively. The model confirmed the role of peripheral veins in regional blood redistribution during posture change from supine to upright and microgravity environment as hypothesized in literature. The model is able to reproduce the known haemodynamic effects of hydraulic pressure change and weightlessness. It also provides a virtual laboratory to examine the consequence of a wide range of orthostatic stresses on human haemodynamics.
Modelling physiology of haemodynamic adaptation in short-term microgravity exposure and orthostatic stress on Earth
Mohammadyari P.Primo
;Gadda G.
Secondo
;Taibi A.Ultimo
2021
Abstract
Cardiovascular haemodynamics alters during posture changes and exposure to microgravity. Vascular auto-remodelling observed in subjects living in space environment causes them orthostatic intolerance when they return on Earth. In this study we modelled the human haemodynamics with focus on head and neck exposed to different hydrostatic pressures in supine, upright (head-up tilt), head-down tilt position, and microgravity environment by using a well-developed 1D-0D haemodynamic model. The model consists of two parts that simulates the arterial (1D) and brain-venous (0D) vascular tree. The cardiovascular system is built as a network of hydraulic resistances and capacitances to properly model physiological parameters like total peripheral resistance, and to calculate vascular pressure and the related flow rate at any branch of the tree. The model calculated 30.0 mmHg (30%), 7.1 mmHg (78%), 1.7 mmHg (38%) reduction in mean blood pressure, intracranial pressure and central venous pressure after posture change from supine to upright, respectively. The modelled brain drainage outflow percentage from internal jugular veins is 67% and 26% for supine and upright posture, while for head-down tilt and microgravity is 65% and 72%, respectively. The model confirmed the role of peripheral veins in regional blood redistribution during posture change from supine to upright and microgravity environment as hypothesized in literature. The model is able to reproduce the known haemodynamic effects of hydraulic pressure change and weightlessness. It also provides a virtual laboratory to examine the consequence of a wide range of orthostatic stresses on human haemodynamics.File | Dimensione | Formato | |
---|---|---|---|
s41598-021-84197-7.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.