UDP and UDP-glucose activate the P2Y14 receptor (P2Y14R) to modulate processes related to inflammation, diabetes, and asthma. A computational pipeline suggested alternatives to naphthalene of a previously reported P2Y14R antagonist (3, PPTN) using docking and molecular dynamics simulations on a hP2Y14R homology model based on P2Y12R structures. By reevaluating the binding of 3 to P2Y14R computationally, two alternatives, i.e., alkynyl and triazolyl derivatives, were identified. Improved synthesis of fluorescent antagonist 4 enabled affinity quantification (IC50s, nM) using flow cytometry of P2Y14R-expressing CHO cells. p-F3C-phenyl-triazole 65 (32) was more potent than a corresponding alkyne 11. Thus, additional triazolyl derivatives were prepared, as guided by docking simulations, with nonpolar aryl substituents favored. Although triazoles were less potent than 3 (6), simpler synthesis facilitated further structural optimization. Additionally, relative P2Y14R affinities agreed with predicted binding of alkynyl and triazole analogues. These triazoles, designed through a structure-based approach, can be assessed in disease models.

Structure-Based Design of 3-(4-Aryl-1H-1,2,3-Triazol-1-yl)-Biphenyl Derivatives as P2Y14 Receptor Antagonists

Ciancetta A;
2016

Abstract

UDP and UDP-glucose activate the P2Y14 receptor (P2Y14R) to modulate processes related to inflammation, diabetes, and asthma. A computational pipeline suggested alternatives to naphthalene of a previously reported P2Y14R antagonist (3, PPTN) using docking and molecular dynamics simulations on a hP2Y14R homology model based on P2Y12R structures. By reevaluating the binding of 3 to P2Y14R computationally, two alternatives, i.e., alkynyl and triazolyl derivatives, were identified. Improved synthesis of fluorescent antagonist 4 enabled affinity quantification (IC50s, nM) using flow cytometry of P2Y14R-expressing CHO cells. p-F3C-phenyl-triazole 65 (32) was more potent than a corresponding alkyne 11. Thus, additional triazolyl derivatives were prepared, as guided by docking simulations, with nonpolar aryl substituents favored. Although triazoles were less potent than 3 (6), simpler synthesis facilitated further structural optimization. Additionally, relative P2Y14R affinities agreed with predicted binding of alkynyl and triazole analogues. These triazoles, designed through a structure-based approach, can be assessed in disease models.
2016
Junker, A; Balasubramanian, R; Ciancetta, A; Uliassi, E; Kiselev, E; Martiriggiano, C; Trujillo, K; Mtchedlidze, G; Birdwell, L; Brown, K A; Harden, T...espandi
File in questo prodotto:
File Dimensione Formato  
ASN_08.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.11 MB
Formato Adobe PDF
5.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2466559
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact