We carried out a theoretical study to investigate the thermodynamics and the kinetics of the activation of the anticancer drug carboplatin in a carbonate buffer, a process which has been suggested to play an important role in the uptake, antitumor activity and toxicity of this drug. The initial stages of this process have been investigated by considering both the carbonate and the bicarbonate ions, the main species in a carbonate buffer at physiological pH, as the attacking species and consist of an initial ring-opening step, involving the displacement of one arm of the chelating ring by the carbonate ion, followed by the protonation of the ring-opened carbonate to the corresponding bicarbonate species and its subsequent decarboxylation to give the final hydroxo product. The obtained results show that the overall process is exoergonic with relatively low activation free energy (below 120 kJ mol(-1)), suggesting that the reaction with carbonate might represent a viable pathway for the activation of carboplatin to give active intermediates which, in the biological environment, may easily further react to give thermodynamically more stable species.

Activation of Carboplatin by Carbonate

Ciancetta A
Primo
;
2012

Abstract

We carried out a theoretical study to investigate the thermodynamics and the kinetics of the activation of the anticancer drug carboplatin in a carbonate buffer, a process which has been suggested to play an important role in the uptake, antitumor activity and toxicity of this drug. The initial stages of this process have been investigated by considering both the carbonate and the bicarbonate ions, the main species in a carbonate buffer at physiological pH, as the attacking species and consist of an initial ring-opening step, involving the displacement of one arm of the chelating ring by the carbonate ion, followed by the protonation of the ring-opened carbonate to the corresponding bicarbonate species and its subsequent decarboxylation to give the final hydroxo product. The obtained results show that the overall process is exoergonic with relatively low activation free energy (below 120 kJ mol(-1)), suggesting that the reaction with carbonate might represent a viable pathway for the activation of carboplatin to give active intermediates which, in the biological environment, may easily further react to give thermodynamically more stable species.
2012
Ciancetta, A; Coletti, C; Marrone, A; Re, N
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2466422
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact