The site-directed generation of a heterodinuclear Fe IIICu II complex by using a new asymmetric dinucleating ligand FloH is reported. The iron(III) ion is introduced first on the preferential metal-binding site of the ligand that leads to the formation of the thermodynamically favored five-membered chelate rings upon metal-binding. Copper(II) is introduced in the next step. The stepwise metalation strategy reported here may be extended to the preparation of other heterometallic complexes with the view of avoiding a statistical distribution. Such complexes can offer novel spectroscopic properties, electronic structures, and reactivities in comparison to their homometallic analogues.

Synthesis and Spectroscopic Characterisation of a Heterodinuclear Iron(III)-Copper(II) Complex Based on an Asymmetric Dinucleating Ligand System

Ciancetta A;
2012

Abstract

The site-directed generation of a heterodinuclear Fe IIICu II complex by using a new asymmetric dinucleating ligand FloH is reported. The iron(III) ion is introduced first on the preferential metal-binding site of the ligand that leads to the formation of the thermodynamically favored five-membered chelate rings upon metal-binding. Copper(II) is introduced in the next step. The stepwise metalation strategy reported here may be extended to the preparation of other heterometallic complexes with the view of avoiding a statistical distribution. Such complexes can offer novel spectroscopic properties, electronic structures, and reactivities in comparison to their homometallic analogues.
2012
Heims, F; Mereacre, V; Ciancetta, A; Mebs, S; Powell, Ak; Greco, C; Ray, K
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2466420
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact