Coiling direction is a basic characteristic of trochospiral planktic foraminifera. Modifications in the coiling direction within ancient planktic foraminiferal populations may reflect important changes in evolution or environment, yet they remain scarcely discussed. Here we investigate fluctuations in the coiling direction within Morozovella assemblages from sections that span the interval of peak Cenozoic warmth, the Early Eocene Climatic Optimum (EECO; ~53–49 million years ago, Ma), at Atlantic Ocean Drilling Program (ODP) sites 1051, 1258 and 1263. The surface-dwelling genus Morozovella is of particular interest because it dominated tropical-subtropical early Paleogene assemblages then suffered an abrupt and permanent decline in abundance and taxonomic diversity at the start of the EECO. At all ODP sites, morozovellids display a dominant dextral coiling preference during the interval preceding the EECO. However, all the Morozovella species at all sites modify their coiling from preferentially dextral to sinistral coiling within the EECO, <200 kyr after the K/X event (~52.8 Ma), providing a new biostratigraphic tool for correlation. We also document that before the major shift in morozovellid coiling, transient excursions to higher abundances of sinistral tests occurred in conjunction with negative carbon isotope excursions. Significantly, carbon isotope data reveal that sinistral morphotypes belonging to the same morphospecies typically have lower δ13C values. The dominance of sinistral morphotypes, at the expense of dextral forms within the EECO, coupled with the lower δ13C signatures of the former, suggests that the sinistral forms were less dependent on their photosymbiotic partnerships and thus able to adapt more readily to paleoceanographic change at the EECO. The observed sinistral and dextral coiling of morozovellids can be a genetically heritable characteristic that lies within cryptic speciation across multiple morphologically defined species. Alternatively the coiling changes were exclusively ecophenotypic responses whereby different species were able to preferentially adopt sinistral coiling in reaction to the changed conditions in the mixed-layer during the EECO. Previous interpretations of coiling flips in planktic foraminifera in the early Eocene, especially including morozovellids, have favoured a genetic explanation rather than an ecological response. Our present data cannot validate or disprove this idea, but should stimulate renewed thought on the matter.
Dextral to sinistral coiling switch in planktic foraminifer Morozovella during the Early Eocene Climatic Optimum
D'Onofrio R.Secondo
Membro del Collaboration Group
;
2021
Abstract
Coiling direction is a basic characteristic of trochospiral planktic foraminifera. Modifications in the coiling direction within ancient planktic foraminiferal populations may reflect important changes in evolution or environment, yet they remain scarcely discussed. Here we investigate fluctuations in the coiling direction within Morozovella assemblages from sections that span the interval of peak Cenozoic warmth, the Early Eocene Climatic Optimum (EECO; ~53–49 million years ago, Ma), at Atlantic Ocean Drilling Program (ODP) sites 1051, 1258 and 1263. The surface-dwelling genus Morozovella is of particular interest because it dominated tropical-subtropical early Paleogene assemblages then suffered an abrupt and permanent decline in abundance and taxonomic diversity at the start of the EECO. At all ODP sites, morozovellids display a dominant dextral coiling preference during the interval preceding the EECO. However, all the Morozovella species at all sites modify their coiling from preferentially dextral to sinistral coiling within the EECO, <200 kyr after the K/X event (~52.8 Ma), providing a new biostratigraphic tool for correlation. We also document that before the major shift in morozovellid coiling, transient excursions to higher abundances of sinistral tests occurred in conjunction with negative carbon isotope excursions. Significantly, carbon isotope data reveal that sinistral morphotypes belonging to the same morphospecies typically have lower δ13C values. The dominance of sinistral morphotypes, at the expense of dextral forms within the EECO, coupled with the lower δ13C signatures of the former, suggests that the sinistral forms were less dependent on their photosymbiotic partnerships and thus able to adapt more readily to paleoceanographic change at the EECO. The observed sinistral and dextral coiling of morozovellids can be a genetically heritable characteristic that lies within cryptic speciation across multiple morphologically defined species. Alternatively the coiling changes were exclusively ecophenotypic responses whereby different species were able to preferentially adopt sinistral coiling in reaction to the changed conditions in the mixed-layer during the EECO. Previous interpretations of coiling flips in planktic foraminifera in the early Eocene, especially including morozovellids, have favoured a genetic explanation rather than an ecological response. Our present data cannot validate or disprove this idea, but should stimulate renewed thought on the matter.File | Dimensione | Formato | |
---|---|---|---|
Luciani et al.2021GloPlaCha.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
7.81 MB
Formato
Adobe PDF
|
7.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.