This study aimed to evaluate the technical feasibility of supercritical carbon dioxide (sc-CO2) treatment for Vibrio parahaemolyticus inactivation in oysters (Crassostrea gigas) and in nutrient broth. For this purpose, a variable-volume reactor was used as experimental system and a 23 factorial design was adopted considering the mass ratio between carbon dioxide and the product, pressurization and depressurization rate and pressurization cycles. Through statistical analysis of the experimental data, the mass ratio of 1:0.8 (product:carbon dioxide), depressurization rate of 10.0 MPa/min and one cycle of pressurization was determined as the best process condition to eliminate V. parahaemolyticus, and this was the condition used for the inactivation kinetic analysis. Comparison between the inactivation kinetics of V. parahaemolyticus showed that the behavior of this microorganism inactivation depends on the environment in which it operates and its initial count. The results confirm that the supercritical carbon dioxide is effective in inactivating microorganisms in oysters, including pathogenic V. parahaemolyticus, demonstrating the potential of this technology in the food industry.
Effect of supercritical carbon dioxide processing on Vibrio parahaemolyticus in nutrient broth and in oysters (Crassostrea gigas)
Lerin L. A.Secondo
;
2018
Abstract
This study aimed to evaluate the technical feasibility of supercritical carbon dioxide (sc-CO2) treatment for Vibrio parahaemolyticus inactivation in oysters (Crassostrea gigas) and in nutrient broth. For this purpose, a variable-volume reactor was used as experimental system and a 23 factorial design was adopted considering the mass ratio between carbon dioxide and the product, pressurization and depressurization rate and pressurization cycles. Through statistical analysis of the experimental data, the mass ratio of 1:0.8 (product:carbon dioxide), depressurization rate of 10.0 MPa/min and one cycle of pressurization was determined as the best process condition to eliminate V. parahaemolyticus, and this was the condition used for the inactivation kinetic analysis. Comparison between the inactivation kinetics of V. parahaemolyticus showed that the behavior of this microorganism inactivation depends on the environment in which it operates and its initial count. The results confirm that the supercritical carbon dioxide is effective in inactivating microorganisms in oysters, including pathogenic V. parahaemolyticus, demonstrating the potential of this technology in the food industry.File | Dimensione | Formato | |
---|---|---|---|
2018-Matos-Inativation_Vibrio_Oyters-J_Food_Sci_TEchnol.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
439.43 kB
Formato
Adobe PDF
|
439.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.