The current paper presents the state-of-the-art of the ongoing IDEAS research project, funded under the Horizon 2020 EU framework programme. The project involves fourteen partners from six European countries and proposes a multi-source cost-effective renewable energy system for the decarbonisation of the building envelope. The system features a radiant floor fed by a heat pump for the building thermal management. The heat pump can exploit sun, air, and/or ground as thermal sources through the use of photovoltaic/thermal solar panels, air heat exchangers, and shallow ground flat-panel heat exchangers. Thermal energy storage is achieved by means of phase change materials spread along several system components, such as: radiant floor to increase its thermal inertia, solar panels for cooling purposes, ground to enhance soil thermal capacity. Within the project framework, a small- scale building, featuring a plethora of sensors for test purposes, and two large-scale buildings are meant to be equipped with the renewable energy system proposed. The small- scale building is currently in operation, and the first results are discussed in the present work. Preliminary data suggest that while multi-source systems coupled with heat pumps are particularly effective, it is complex to obtain suitable thermal energy storages on urban scale.

A Heat Pump-Based Multi-source Renewable Energy System for the Building Air Conditioning: The IDEAS Project Experience

Cesari, Silvia
Primo
;
Natali, Alessia
Secondo
;
Larwa, Barbara;Baccega, Eleonora;Boschetti, Micol;Mainardi, Elena;Cavazzuti, Marco
;
Mangherini, Giulio;Vincenzi, Donato;Bottarelli, Michele
Ultimo
2021

Abstract

The current paper presents the state-of-the-art of the ongoing IDEAS research project, funded under the Horizon 2020 EU framework programme. The project involves fourteen partners from six European countries and proposes a multi-source cost-effective renewable energy system for the decarbonisation of the building envelope. The system features a radiant floor fed by a heat pump for the building thermal management. The heat pump can exploit sun, air, and/or ground as thermal sources through the use of photovoltaic/thermal solar panels, air heat exchangers, and shallow ground flat-panel heat exchangers. Thermal energy storage is achieved by means of phase change materials spread along several system components, such as: radiant floor to increase its thermal inertia, solar panels for cooling purposes, ground to enhance soil thermal capacity. Within the project framework, a small- scale building, featuring a plethora of sensors for test purposes, and two large-scale buildings are meant to be equipped with the renewable energy system proposed. The small- scale building is currently in operation, and the first results are discussed in the present work. Preliminary data suggest that while multi-source systems coupled with heat pumps are particularly effective, it is complex to obtain suitable thermal energy storages on urban scale.
2021
Cesari, Silvia; Natali, Alessia; Larwa, Barbara; Baccega, Eleonora; Boschetti, Micol; Mainardi, Elena; Cavazzuti, Marco; Piazzi, Agostino; Mangherini, Giulio; Vincenzi, Donato; Bottarelli, Michele
File in questo prodotto:
File Dimensione Formato  
2021_Cesari Natali_Tecnica Italiana-Italian J of Engineering Science.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2463127
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact