Plutons in crustal shear zones may exploit inherited structures, interfere with strain localizing or be deformed passively. To constrain the relative timing of such tectono-magmatic relationships in natural settings is not always straight-forward. We here present sandbox-type analogue model experiments simulating magma emplacement into simple and transtensional crustal shear zones to test the diagnostic potential of pluton shape with respect to timing and setting. Observations based on surface deformation and intrusion shape exemplify the interplay between evolving and inherited tectonic structures and magma uprising. We observe markedly asymmetric intrusions in association with dikes reflecting the regional stresses, fault pattern and finite strain field. At the same time, the presence of an intrusion modifies the tectonic evolution, but only transiently, resulting in short-lived faults, reactivation and inversion. Diagnostic attributes include the pluton’s aspect ratio, its orientation and amplitude as well as dike association. Accordingly, syn-tectonic intrusions show the highest pluton amplitudes, but only intermediate elongation compared to other scenarios. They are oriented parallel to Riedel shears in simple shear, respectively to the compression direction in transtension. Post-tectonic intrusions are least elongated, have medium amplitudes and exploit Riedel shears. Pre-tectonic intrusions are characterized by lowest amplitudes but the highest aspect ratios and are parallel to the finite elongation direction. Intrusions in transtensional shear zones are generally of less elongate than those in simple shear zones. Experimental results are tested against observations from natural examples validating the diagnostic potential of pluton shape for the timing and the tectonic setting of the emplacement.

Shape of plutons in crustal shear zones: A tectono-magmatic guide based on analogue models

Michail, Maria
Primo
;
Riva, Alberto;Gianolla, Piero
Penultimo
;
Coltorti, Massimo
Ultimo
2021

Abstract

Plutons in crustal shear zones may exploit inherited structures, interfere with strain localizing or be deformed passively. To constrain the relative timing of such tectono-magmatic relationships in natural settings is not always straight-forward. We here present sandbox-type analogue model experiments simulating magma emplacement into simple and transtensional crustal shear zones to test the diagnostic potential of pluton shape with respect to timing and setting. Observations based on surface deformation and intrusion shape exemplify the interplay between evolving and inherited tectonic structures and magma uprising. We observe markedly asymmetric intrusions in association with dikes reflecting the regional stresses, fault pattern and finite strain field. At the same time, the presence of an intrusion modifies the tectonic evolution, but only transiently, resulting in short-lived faults, reactivation and inversion. Diagnostic attributes include the pluton’s aspect ratio, its orientation and amplitude as well as dike association. Accordingly, syn-tectonic intrusions show the highest pluton amplitudes, but only intermediate elongation compared to other scenarios. They are oriented parallel to Riedel shears in simple shear, respectively to the compression direction in transtension. Post-tectonic intrusions are least elongated, have medium amplitudes and exploit Riedel shears. Pre-tectonic intrusions are characterized by lowest amplitudes but the highest aspect ratios and are parallel to the finite elongation direction. Intrusions in transtensional shear zones are generally of less elongate than those in simple shear zones. Experimental results are tested against observations from natural examples validating the diagnostic potential of pluton shape for the timing and the tectonic setting of the emplacement.
2021
Michail, Maria; Rudolf, Michael; Rosenau, Matthias; Riva, Alberto; Gianolla, Piero; Coltorti, Massimo
File in questo prodotto:
File Dimensione Formato  
Michail et al 20121.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 34.47 MB
Formato Adobe PDF
34.47 MB Adobe PDF Visualizza/Apri
1-s2.0-S0191814121001413-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 22.97 MB
Formato Adobe PDF
22.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2461179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact