Preclinical models of ischemia/reperfusion injury (RI) demonstrate the deleterious effects of permeability transition pore complex (PTPC) opening in the first minutes upon revascularization of the occluded vessel. The ATP synthase c subunit (Csub) influences PTPC activity in cells, thus impacting tissue injury. A conserved glycine-rich domain in Csub is classified as critical because, when mutated, it modifies ATP synthase properties, protein interaction with the mitochondrial calcium (Ca2+) uniporter complex, and the conductance of the PTPC. Here, we document the role of a naturally occurring mutation in the Csub-encoding ATP5G1 gene at the G87 position found in two ST-segment elevation myocardial infarction (STEMI) patients and how PTPC opening is related to RI in patients affected by the same disease. We report a link between the expression of ATP5G1G87E and the response to hypoxia/reoxygenation of human cardiomyocytes, which worsen when compared to those expressing the wild-type protein, and a positive correlation between PTPC and RI.
A naturally occurring mutation in ATP synthase subunit c is associated with increased damage following hypoxia/reoxygenation in STEMI patients
Morciano G.Primo
;Pedriali G.Secondo
;Bonora M.;Pavasini R.;Bovolenta M.;Pinotti M.;Wieckowski M. R.;Giorgi C.;Ferrari R.;Campo G.Penultimo
;Pinton P.
Ultimo
2021
Abstract
Preclinical models of ischemia/reperfusion injury (RI) demonstrate the deleterious effects of permeability transition pore complex (PTPC) opening in the first minutes upon revascularization of the occluded vessel. The ATP synthase c subunit (Csub) influences PTPC activity in cells, thus impacting tissue injury. A conserved glycine-rich domain in Csub is classified as critical because, when mutated, it modifies ATP synthase properties, protein interaction with the mitochondrial calcium (Ca2+) uniporter complex, and the conductance of the PTPC. Here, we document the role of a naturally occurring mutation in the Csub-encoding ATP5G1 gene at the G87 position found in two ST-segment elevation myocardial infarction (STEMI) patients and how PTPC opening is related to RI in patients affected by the same disease. We report a link between the expression of ATP5G1G87E and the response to hypoxia/reoxygenation of human cardiomyocytes, which worsen when compared to those expressing the wild-type protein, and a positive correlation between PTPC and RI.File | Dimensione | Formato | |
---|---|---|---|
PIIS2211124721002977.pdf
accesso aperto
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
4.25 MB
Formato
Adobe PDF
|
4.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.