This contribution evaluates the performance of two predictive approaches in calculating temperature-programmed gas chromatographic retention times under vacuum outlet conditions. In the first approach, the predictions are performed according to a thermodynamic-based model, while in the second approach the predictions are conducted by using the temperature-programmed retention time equation. These modeling approaches were evaluated on 47 test compounds belonging to different chemical classes, under different experimental conditions, namely, two modes of gas flow regulation (i.e., constant inlet pressure and constant flow rate), and different temperature programs (i.e., 7 °C/min, 5 °C/min, and 3 °C/min). Both modeling approaches gave satisfactory results and were able to accurately predict the elution profiles of the studied test compounds. The thermodynamic-based model provided more satisfying results under constant flow rate mode, with average modeling errors of 0.43%, 0.33%, and 0.15% across all the studied temperature programs. Nevertheless, under constant inlet pressure mode, lower modeling errors were achieved when using the temperature-programmed retention time equation, with average modeling errors of 0.18%, 0.18%, and 0.31% across the used temperature programs.
Modeling approaches for temperature-programmed gas chromatographic retention times under vacuum outlet conditions
Franchina F. A.
Secondo
;
2021
Abstract
This contribution evaluates the performance of two predictive approaches in calculating temperature-programmed gas chromatographic retention times under vacuum outlet conditions. In the first approach, the predictions are performed according to a thermodynamic-based model, while in the second approach the predictions are conducted by using the temperature-programmed retention time equation. These modeling approaches were evaluated on 47 test compounds belonging to different chemical classes, under different experimental conditions, namely, two modes of gas flow regulation (i.e., constant inlet pressure and constant flow rate), and different temperature programs (i.e., 7 °C/min, 5 °C/min, and 3 °C/min). Both modeling approaches gave satisfactory results and were able to accurately predict the elution profiles of the studied test compounds. The thermodynamic-based model provided more satisfying results under constant flow rate mode, with average modeling errors of 0.43%, 0.33%, and 0.15% across all the studied temperature programs. Nevertheless, under constant inlet pressure mode, lower modeling errors were achieved when using the temperature-programmed retention time equation, with average modeling errors of 0.18%, 0.18%, and 0.31% across the used temperature programs.File | Dimensione | Formato | |
---|---|---|---|
47. Gaida et al JCA 2021.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.