Motivated by an example related to the tensor algebra, a stronger version of the notion of separable functor, called heavily separable (h-separable for short), was introduced and investigated in [1]. Here we study h-coseparable coalgebras in monoidal categories with special concern with the monoidal category TA♯ of right transfer morphisms through an algebra A in a monoidal category. We characterize the h-separability of the forgetful functor from the category of entwined modules associated to a cowreath to the base category using suitable Casimir morphisms. Even if there are non trivial examples of h-coseparable coalgebras over a field [1, Theorem 4.4], here we provide non trivial examples of h-coseparable coalgebras in the monoidal category T_{A⊗H^{op}}^ where H=H_4 is the Sweedler 4-dimensional Hopf algebra over a field k and A=Cl(α,β,γ) the Clifford algebra.

Heavily separable cowreaths

Menini C.
Primo
;
2021

Abstract

Motivated by an example related to the tensor algebra, a stronger version of the notion of separable functor, called heavily separable (h-separable for short), was introduced and investigated in [1]. Here we study h-coseparable coalgebras in monoidal categories with special concern with the monoidal category TA♯ of right transfer morphisms through an algebra A in a monoidal category. We characterize the h-separability of the forgetful functor from the category of entwined modules associated to a cowreath to the base category using suitable Casimir morphisms. Even if there are non trivial examples of h-coseparable coalgebras over a field [1, Theorem 4.4], here we provide non trivial examples of h-coseparable coalgebras in the monoidal category T_{A⊗H^{op}}^ where H=H_4 is the Sweedler 4-dimensional Hopf algebra over a field k and A=Cl(α,β,γ) the Clifford algebra.
2021
Menini, C.; Torrecillas, B.
File in questo prodotto:
File Dimensione Formato  
Heavily separable cowreaths.pdf

solo gestori archivio

Descrizione: Articolo
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 435.9 kB
Formato Adobe PDF
435.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2459556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact