The present research is specifically based on the use of greatly-reduced gas flows, in flow-modulator (FM) comprehensive two-dimensional gas chromatography systems. In particular, focus of the present research is directed to FM devices characterized by an accumulation stage, and a much briefer re-injection step. It has been widely accepted that the operation of such FM systems requires high gas flows (≥20. mL/min), to re-inject the gas-phase contents of sample (or accumulation) loops, onto the second column. On the contrary, it will be herein demonstrated that much lower gas flows (≈ 6-8. mL/min) can efficiently perform the modulation step of re-injection. The possibility of using such improved operational conditions is given simply by a fine optimization of the processes of accumulation and re-injection. The application of lower gas flows not only means that second-dimension separations are carried out under better analytical conditions, but, even more importantly, greatly reduces problems which arise when using mass spectrometry (i.e., sensitivity and instrumental pumping capacity).

Use of greatly-reduced gas flows in flow-modulated comprehensive two-dimensional gas chromatography-mass spectrometry

Franchina Flavio A.
Secondo
;
2014

Abstract

The present research is specifically based on the use of greatly-reduced gas flows, in flow-modulator (FM) comprehensive two-dimensional gas chromatography systems. In particular, focus of the present research is directed to FM devices characterized by an accumulation stage, and a much briefer re-injection step. It has been widely accepted that the operation of such FM systems requires high gas flows (≥20. mL/min), to re-inject the gas-phase contents of sample (or accumulation) loops, onto the second column. On the contrary, it will be herein demonstrated that much lower gas flows (≈ 6-8. mL/min) can efficiently perform the modulation step of re-injection. The possibility of using such improved operational conditions is given simply by a fine optimization of the processes of accumulation and re-injection. The application of lower gas flows not only means that second-dimension separations are carried out under better analytical conditions, but, even more importantly, greatly reduces problems which arise when using mass spectrometry (i.e., sensitivity and instrumental pumping capacity).
2014
Tranchida Peter, Q.; Franchina Flavio, A.; Dugo, Paola; Mondello, Luigi
File in questo prodotto:
File Dimensione Formato  
374 paper 14-14.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2456435
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 41
social impact