Since the publication of the River Continuum Concept (RCC), the capacity of the longitudinal dimension to predict the distribution of species and ecological functions in river networks was discussed by different river theories. The taxonomic structures and functional attributes of macrobenthic communities were investigated along the river continuum in the river Adige network (Northern Italy), with the aim to test the reliability of RCC theory and clarify the relation between structural and functional features in lotic systems. Distance from the spring was found to be most representative proxy among environmental parameters. The analysis highlighted the decrease of biodiversity levels along the river continuum. The decrease of taxonomic diversity corresponded to the loss in functional richness. The abundances of predator and walker taxa, as well as semelparous organisms, declined along the longitudinal gradient, suggesting variations in community complexity and granulometry. Regression models also depicted the presence of disturbed communities in the central section of the basin, where intensive agricultural activities occur, that affected environmental gradients. Overall, results offered evidences that the river continuum may predict macrobenthic community structures in terms of taxonomic diversity, thus confirming the general validity of RCC. Nonetheless, the functional analysis did not provide equally clear evidences to support the theory. After four decades from its postulation, the RCC is still a reliable model to predict the general macroinvertebrates distribution. However, community functions may respond to a number of local factors not considered in RCC, which could find a declination in other theories. The relations between structural and functional features confirmed to be complex and sensitive to disturbances and local conditions.

Structural and functional variations of the macrobenthic community of the adige basin along the river continuum

Gaglio M.
Primo
;
Aschonitis V.
Secondo
;
Muresan A. N.;Vincenzi F.;Castaldelli G.
Penultimo
;
Fano E. A.
Ultimo
2021

Abstract

Since the publication of the River Continuum Concept (RCC), the capacity of the longitudinal dimension to predict the distribution of species and ecological functions in river networks was discussed by different river theories. The taxonomic structures and functional attributes of macrobenthic communities were investigated along the river continuum in the river Adige network (Northern Italy), with the aim to test the reliability of RCC theory and clarify the relation between structural and functional features in lotic systems. Distance from the spring was found to be most representative proxy among environmental parameters. The analysis highlighted the decrease of biodiversity levels along the river continuum. The decrease of taxonomic diversity corresponded to the loss in functional richness. The abundances of predator and walker taxa, as well as semelparous organisms, declined along the longitudinal gradient, suggesting variations in community complexity and granulometry. Regression models also depicted the presence of disturbed communities in the central section of the basin, where intensive agricultural activities occur, that affected environmental gradients. Overall, results offered evidences that the river continuum may predict macrobenthic community structures in terms of taxonomic diversity, thus confirming the general validity of RCC. Nonetheless, the functional analysis did not provide equally clear evidences to support the theory. After four decades from its postulation, the RCC is still a reliable model to predict the general macroinvertebrates distribution. However, community functions may respond to a number of local factors not considered in RCC, which could find a declination in other theories. The relations between structural and functional features confirmed to be complex and sensitive to disturbances and local conditions.
2021
Gaglio, M.; Aschonitis, V.; Muresan, A. N.; Vincenzi, F.; Castaldelli, G.; Fano, E. A.
File in questo prodotto:
File Dimensione Formato  
water-13-00451-v2.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2449652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact