We consider the initial value problem for a class of semilinear p-evolution equations with (t, x)-depending coefficients. Under suitable decay conditions for |x|→∞ on the imaginary part of the coefficients, we prove local in time well posedness of the Cauchy problem in suitable weighted Sobolev spaces.

Semilinear p-Evolution Equations in Weighted Sobolev Spaces

Ascanelli Alessia
Primo
;
2021

Abstract

We consider the initial value problem for a class of semilinear p-evolution equations with (t, x)-depending coefficients. Under suitable decay conditions for |x|→∞ on the imaginary part of the coefficients, we prove local in time well posedness of the Cauchy problem in suitable weighted Sobolev spaces.
2021
978-3-030-61345-7
978-3-030-61346-4
Nash-Moser theorem; p-evolution equations; Pseudo-differential operators; Semilinear Cauchy problem; Weighted Sobolev spaces
File in questo prodotto:
File Dimensione Formato  
bok 978-3-030-61346-4-13-46ASCCapp.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 500.07 kB
Formato Adobe PDF
500.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2449564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact