Objective: To evaluate the effects of several single TMS pulses, delivered at two different inter-trial intervals (ITIs), on corticospinal excitability. Methods: Twelve healthy volunteers participated in two experimental sessions, during which TMS pulses were delivered at random or at fixed ITIs. The TMS single pulse-induced modulation of corticospinal output (motor evoked potential amplitude - MEP) was evaluated on-line. Each session began with a baseline block, followed by 10 blocks, with 20 TMS pulses each. Intra- and inter-block effects were valuated using an ANOVA model, through nested random effect on subjects considering the subject-specific variability. Results: The delivery of successive TMS pulses significantly changed both intra-block and inter-block cortical excitability, as demonstrated by an increase in the amplitude of MEPs (p < 0.001) and supported through trend analyses, showing a perfect linear trend for inter-block levels (R2 = 1) and nearly linear trend for intra-block levels (R2 = 0.97). The MEPs significantly increased when the TMS pulses were delivered at both random and fixed ITIs. Conclusions: Single TMS pulses induce cumulative changes in neural activity during the same stimulation, resulting in a motor cortical excitability increase. Significance: Particular attention should be taken when several single TMS pulses are delivered in research and clinical settings for diagnostic and therapeutic purposes.

Ongoing cumulative effects of single TMS pulses on corticospinal excitability: An intra- and inter-block investigation

Koch, Giacomo
Penultimo
;
2016

Abstract

Objective: To evaluate the effects of several single TMS pulses, delivered at two different inter-trial intervals (ITIs), on corticospinal excitability. Methods: Twelve healthy volunteers participated in two experimental sessions, during which TMS pulses were delivered at random or at fixed ITIs. The TMS single pulse-induced modulation of corticospinal output (motor evoked potential amplitude - MEP) was evaluated on-line. Each session began with a baseline block, followed by 10 blocks, with 20 TMS pulses each. Intra- and inter-block effects were valuated using an ANOVA model, through nested random effect on subjects considering the subject-specific variability. Results: The delivery of successive TMS pulses significantly changed both intra-block and inter-block cortical excitability, as demonstrated by an increase in the amplitude of MEPs (p < 0.001) and supported through trend analyses, showing a perfect linear trend for inter-block levels (R2 = 1) and nearly linear trend for intra-block levels (R2 = 0.97). The MEPs significantly increased when the TMS pulses were delivered at both random and fixed ITIs. Conclusions: Single TMS pulses induce cumulative changes in neural activity during the same stimulation, resulting in a motor cortical excitability increase. Significance: Particular attention should be taken when several single TMS pulses are delivered in research and clinical settings for diagnostic and therapeutic purposes.
2016
Pellicciari, Maria Concetta; Miniussi, Carlo; Ferrari, Clarissa; Koch, Giacomo; Bortoletto, Marta
File in questo prodotto:
File Dimensione Formato  
Ongoing-cumulative-effects-of-single-TMS-pulses-on-corticospinal-excitability-An-intra-and-interblock-investigation2016Clinical-Neurophysiology.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2447430
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 56
social impact