Offshore wind turbines are now a mature technology to produce renewable energy on a vast scale, nonetheless several design and maintenance planning challenges remain. There have been attempts to investigate the impact of marine growth on fixed offshore wind turbine structures, but only few adopted a whole dynamics approach. This work presents a methodology to capture the influence of marine growth on the dynamic response of a tripod substructure, supporting the NREL 5 MW reference offshore wind turbine, under combined dynamic loads from wind and waves, and including soil-structure interaction by means of the spring-to-ground model. Marine growth is modelled as prescribed by DNV and API, evaluating the effects of variation of its thickness, roughness, and distribution. It is here demonstrated that marine growth thickness and roughness impact significantly on the loads acting on wind turbines’ structures and its dynamic response, and that heterogeneity in marine growth thickness profiles vs depth available in literature lead to substantially different results. Tower top displacement becomes 24% higher when marine growth thickness grows from 0 to 200 mm. On the other hand, the changes in the natural frequencies of the support structure with an increase of marine growth’s thickness are almost negligible (0.3%).

Analysis of tripod supported offshore wind turbines under conditions of marine growth

Arcigni F.
Primo
;
Collu M.
Penultimo
;
Venturini M.
Ultimo
2021

Abstract

Offshore wind turbines are now a mature technology to produce renewable energy on a vast scale, nonetheless several design and maintenance planning challenges remain. There have been attempts to investigate the impact of marine growth on fixed offshore wind turbine structures, but only few adopted a whole dynamics approach. This work presents a methodology to capture the influence of marine growth on the dynamic response of a tripod substructure, supporting the NREL 5 MW reference offshore wind turbine, under combined dynamic loads from wind and waves, and including soil-structure interaction by means of the spring-to-ground model. Marine growth is modelled as prescribed by DNV and API, evaluating the effects of variation of its thickness, roughness, and distribution. It is here demonstrated that marine growth thickness and roughness impact significantly on the loads acting on wind turbines’ structures and its dynamic response, and that heterogeneity in marine growth thickness profiles vs depth available in literature lead to substantially different results. Tower top displacement becomes 24% higher when marine growth thickness grows from 0 to 200 mm. On the other hand, the changes in the natural frequencies of the support structure with an increase of marine growth’s thickness are almost negligible (0.3%).
2021
Arcigni, F.; Abhinav, K. A.; Collu, M.; Venturini, M.
File in questo prodotto:
File Dimensione Formato  
152.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.66 MB
Formato Adobe PDF
7.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Arcigni_etal_OE_2021_Analysis_of_tripod_supported_offshore_wind.pdf

accesso aperto

Descrizione: Post-print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2440537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact