Present devices for cardiac resynchronization therapy offer the possibility of tailoring the hemodynamic effect of biventricular pacing by optimization of the interventricular delay (VV) beyond atrioventricular (AV)-interval optimization. It was not yet defined whether a QRS width-based strategy may be a helpful tool for echocardiography for device programming. The aim of the study was to investigate the relation between VV-interval optimization guided by echocardiography and guided by QRS interval width. One hundred six patients with a cardiac resynchronization therapy device for ≥3 months were enrolled. All patients underwent echocardiographic AV and VV delay optimization. The AV interval was optimized according to the E wave-A wave (EA) interval and left ventricular filling time. At the optimal AV delay, VV optimization was performed by measuring the aortic velocity time integral at 5 different settings: simultaneous right and left ventricle output, left ventricle pre-excitation (left ventricle + 40 and 80 ms, respectively), and right ventricle pre-excitation (right ventricle + 40 and 80 ms, respectively). A 12-lead electrocardiogram was recorded and QRS duration was measured in the lead with the greatest QRS width. The electrocardiographic (ECG)-optimized VV interval was defined according to the narrowest achievable QRS interval among 5 VV intervals. The echocardiographic-optimized VV interval was left ventricle + 40 ms in 28 patients, left ventricle + 80 ms in 15 patients, simultaneous in 46 patients, right ventricle + 40 ms in 14 patients, and right ventricle + 80 ms in 3 patients. Significant concordance (κ = 0.69, p <0.001) was found between the echocardiographic- and ECG-optimized VV interval. In conclusion, significant concordance appeared to exist during biventricular pacing between VV programming based on the shortest QRS interval at 12-lead ECG pacing and echocardiographic-guided VV-interval optimization. A combined ECG- and echocardiographic approach could be a less time-consuming solution in performing this operation. © 2008 Elsevier Inc. All rights reserved.

Interventricular Delay Interval Optimization in Cardiac Resynchronization Therapy Guided by Echocardiography Versus Guided by Electrocardiographic QRS Interval Width

Bertini M.
;
Sangiorgi D.;
2008

Abstract

Present devices for cardiac resynchronization therapy offer the possibility of tailoring the hemodynamic effect of biventricular pacing by optimization of the interventricular delay (VV) beyond atrioventricular (AV)-interval optimization. It was not yet defined whether a QRS width-based strategy may be a helpful tool for echocardiography for device programming. The aim of the study was to investigate the relation between VV-interval optimization guided by echocardiography and guided by QRS interval width. One hundred six patients with a cardiac resynchronization therapy device for ≥3 months were enrolled. All patients underwent echocardiographic AV and VV delay optimization. The AV interval was optimized according to the E wave-A wave (EA) interval and left ventricular filling time. At the optimal AV delay, VV optimization was performed by measuring the aortic velocity time integral at 5 different settings: simultaneous right and left ventricle output, left ventricle pre-excitation (left ventricle + 40 and 80 ms, respectively), and right ventricle pre-excitation (right ventricle + 40 and 80 ms, respectively). A 12-lead electrocardiogram was recorded and QRS duration was measured in the lead with the greatest QRS width. The electrocardiographic (ECG)-optimized VV interval was defined according to the narrowest achievable QRS interval among 5 VV intervals. The echocardiographic-optimized VV interval was left ventricle + 40 ms in 28 patients, left ventricle + 80 ms in 15 patients, simultaneous in 46 patients, right ventricle + 40 ms in 14 patients, and right ventricle + 80 ms in 3 patients. Significant concordance (κ = 0.69, p <0.001) was found between the echocardiographic- and ECG-optimized VV interval. In conclusion, significant concordance appeared to exist during biventricular pacing between VV programming based on the shortest QRS interval at 12-lead ECG pacing and echocardiographic-guided VV-interval optimization. A combined ECG- and echocardiographic approach could be a less time-consuming solution in performing this operation. © 2008 Elsevier Inc. All rights reserved.
2008
Bertini, M.; Ziacchi, M.; Biffi, M.; Martignani, C.; Saporito, D.; Valzania, C.; Diemberger, I.; Cervi, E.; Frisoni, J.; Sangiorgi, D.; Branzi, A.; Bo...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2437642
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 36
social impact