An appraisal of recent data highlighting aspects inspired by the new Geroscience perspective are here discussed. The main findings are summarized as follows: i) liver has to be considered an immunological organ, and new studies suggest a role for the recently described cells named telocytes; ii) the liver-gut axis represents a crucial connection with environment and life style habits and may influence liver diseases onset; iii) the physiological aging of liver shows relatively modest alterations. Nevertheless, several molecular changes appear to be relevant: a) an increase of microRNA-31-5p; -141-3p; -200c-3p expressions after 60 years of age; b) a remodeling of genome-wide DNA methylation profile evident until 60 years of age and then plateauing; c) changes in transcriptome including the metabolic zones of hepatocyte lobules; d) liver undergoes an accelerated aging in presence of chronic inflammation/liver diseases in a sort of continuum, largely as a consequence of unhealthy life styles and exposure to environmental noxious agents. We argue that chronic liver inflammation has all the major characteristics of "inflammaging" and likely sustains the onset and progression of liver diseases. Finally, we propose to use a combination of parameters, mostly obtained by omics such as transcriptomics and epigenomics, to evaluate in deep both the biological age of liver (in comparison with the chronological age) and the effects of donor-recipient age-mismatches in the context of liver transplants.
The peculiar aging of human liver: A geroscience perspective within transplant context
Grazi, Gian LucaConceptualization
;
2019
Abstract
An appraisal of recent data highlighting aspects inspired by the new Geroscience perspective are here discussed. The main findings are summarized as follows: i) liver has to be considered an immunological organ, and new studies suggest a role for the recently described cells named telocytes; ii) the liver-gut axis represents a crucial connection with environment and life style habits and may influence liver diseases onset; iii) the physiological aging of liver shows relatively modest alterations. Nevertheless, several molecular changes appear to be relevant: a) an increase of microRNA-31-5p; -141-3p; -200c-3p expressions after 60 years of age; b) a remodeling of genome-wide DNA methylation profile evident until 60 years of age and then plateauing; c) changes in transcriptome including the metabolic zones of hepatocyte lobules; d) liver undergoes an accelerated aging in presence of chronic inflammation/liver diseases in a sort of continuum, largely as a consequence of unhealthy life styles and exposure to environmental noxious agents. We argue that chronic liver inflammation has all the major characteristics of "inflammaging" and likely sustains the onset and progression of liver diseases. Finally, we propose to use a combination of parameters, mostly obtained by omics such as transcriptomics and epigenomics, to evaluate in deep both the biological age of liver (in comparison with the chronological age) and the effects of donor-recipient age-mismatches in the context of liver transplants.File | Dimensione | Formato | |
---|---|---|---|
ageing research reviews.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.