Androgen receptor (AR), is a transcription factor and a member of a hormone receptor superfamily. AR plays a vital role in the progression of prostate cancer and is a crucial target for therapeutic interventions. While the majority of advanced-stage prostate cancer patients will initially respond to the androgen deprivation, the disease often progresses to castrate-resistant prostate cancer (CRPC). Interestingly, CRPC tumors continue to depend on hyperactive AR signaling and will respond to potent second-line antiandrogen therapies, including bicalutamide (CASODEX®) and enzalutamide (XTANDI®). However, the progression-free survival rate for the CRPC patients on antiandrogen therapies is only 8–19 months. Hence, there is a need to understand the mechanisms underlying CRPC progression and eventual treatment resistance. Here, we have leveraged next-generation sequencing and newly developed analytical methodologies to evaluate the role of AR signaling in regulating the transcriptome of prostate cancer cells. The genomic and pharmacologic stimulation and inhibition of AR activity demonstrates that AR regulates alternative splicing within cancer-relevant genes. Furthermore, by integrating transcriptomic data from in vitro experiments and in prostate cancer patients, we found that a significant number of AR-regulated splicing events are associated with tumor progression. For example, we found evidence for an inadvertent AR-antagonist-mediated switch in IDH1 and PL2G2A isoform expression, which is associated with a decrease in overall survival of patients. Mechanistically, we discovered that the epithelial-specific splicing regulators (ESRP1 and ESRP2), flank many AR-regulated alternatively spliced exons. And, using 2D invasion assays, we show that the inhibition of ESRPs can suppress AR-antagonist-driven tumor invasion. Our work provides evidence for a new mechanism by which AR alters the transcriptome of prostate cancer cells by modulating alternative splicing. As such, our work has important implications for CRPC progression and development of resistance to treatment with bicalutamide and enzalutamide.

Androgen receptor signaling regulates the transcriptome of prostate cancer cells by modulating global alternative splicing

Gagliano T.;Bortolotti D.;Gentili V.;Rizzo R.;Giamas G.;
2020

Abstract

Androgen receptor (AR), is a transcription factor and a member of a hormone receptor superfamily. AR plays a vital role in the progression of prostate cancer and is a crucial target for therapeutic interventions. While the majority of advanced-stage prostate cancer patients will initially respond to the androgen deprivation, the disease often progresses to castrate-resistant prostate cancer (CRPC). Interestingly, CRPC tumors continue to depend on hyperactive AR signaling and will respond to potent second-line antiandrogen therapies, including bicalutamide (CASODEX®) and enzalutamide (XTANDI®). However, the progression-free survival rate for the CRPC patients on antiandrogen therapies is only 8–19 months. Hence, there is a need to understand the mechanisms underlying CRPC progression and eventual treatment resistance. Here, we have leveraged next-generation sequencing and newly developed analytical methodologies to evaluate the role of AR signaling in regulating the transcriptome of prostate cancer cells. The genomic and pharmacologic stimulation and inhibition of AR activity demonstrates that AR regulates alternative splicing within cancer-relevant genes. Furthermore, by integrating transcriptomic data from in vitro experiments and in prostate cancer patients, we found that a significant number of AR-regulated splicing events are associated with tumor progression. For example, we found evidence for an inadvertent AR-antagonist-mediated switch in IDH1 and PL2G2A isoform expression, which is associated with a decrease in overall survival of patients. Mechanistically, we discovered that the epithelial-specific splicing regulators (ESRP1 and ESRP2), flank many AR-regulated alternatively spliced exons. And, using 2D invasion assays, we show that the inhibition of ESRPs can suppress AR-antagonist-driven tumor invasion. Our work provides evidence for a new mechanism by which AR alters the transcriptome of prostate cancer cells by modulating alternative splicing. As such, our work has important implications for CRPC progression and development of resistance to treatment with bicalutamide and enzalutamide.
2020
Shah, K.; Gagliano, T.; Garland, L.; O'Hanlon, T.; Bortolotti, D.; Gentili, V.; Rizzo, R.; Giamas, G.; Dean, M.
File in questo prodotto:
File Dimensione Formato  
s41388-020-01429-2.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 4.34 MB
Formato Adobe PDF
4.34 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2434309
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact