The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism has been correlated with increased predisposition to develop cognitive and psychiatric disorders, and with a reduced response to some therapeutic treatments. However, the mechanisms underlying these impairments are currently not completely understood. Remarkably, kynurenine pathway alterations have also been implicated in cognitive and psychiatric disorders. Moreover, recent evidence suggests that physical exercise may promote beneficial effects by controlling kynurenine metabolism in the muscle. The aim of the present study was to assess whether the kynurenine pathway was differentially regulated in sedentary and exercising wild-type (BDNFVal/Val) and homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. We found that plasma and hippocampal levels of kynurenic acid and the hippocampal mRNA levels of IDO1 and KAT2 protein levels were increased in BDNFMet/Met mice and were not modulated by physical exercise. On the contrary, KAT1 protein levels in the gastrocnemius muscle were reduced, whereas MCP1 mRNA in the gastrocnemius muscle and GFAP protein in the hippocampus were increased in BDNFMet/Met mice compared to BDNFVal/Val mice, and reduced by physical exercise. Physical exercise increased plasmatic kynurenine levels only in BDNFMet/Met mice, and protein levels of KAT1 and KAT4 in the gastrocnemius muscle and hippocampus respectively, regardless of the genotype. Finally, we found that physical exercise was able to enhance the hippocampal-dependent memory only in the BDNFVal/Val mice. Overall our results showing an overactivation of the kynurenine pathway in the BDNFMet/Met mice may suggest a possible mechanism underlying the cognitive deficits reported in the BDNF Val66Met carriers.
Kynurenine pathway is altered in BDNF Val66Met knock-in mice: Effect of physical exercise
Beggiato S.Secondo
;Ferraro L.;
2020
Abstract
The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism has been correlated with increased predisposition to develop cognitive and psychiatric disorders, and with a reduced response to some therapeutic treatments. However, the mechanisms underlying these impairments are currently not completely understood. Remarkably, kynurenine pathway alterations have also been implicated in cognitive and psychiatric disorders. Moreover, recent evidence suggests that physical exercise may promote beneficial effects by controlling kynurenine metabolism in the muscle. The aim of the present study was to assess whether the kynurenine pathway was differentially regulated in sedentary and exercising wild-type (BDNFVal/Val) and homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. We found that plasma and hippocampal levels of kynurenic acid and the hippocampal mRNA levels of IDO1 and KAT2 protein levels were increased in BDNFMet/Met mice and were not modulated by physical exercise. On the contrary, KAT1 protein levels in the gastrocnemius muscle were reduced, whereas MCP1 mRNA in the gastrocnemius muscle and GFAP protein in the hippocampus were increased in BDNFMet/Met mice compared to BDNFVal/Val mice, and reduced by physical exercise. Physical exercise increased plasmatic kynurenine levels only in BDNFMet/Met mice, and protein levels of KAT1 and KAT4 in the gastrocnemius muscle and hippocampus respectively, regardless of the genotype. Finally, we found that physical exercise was able to enhance the hippocampal-dependent memory only in the BDNFVal/Val mice. Overall our results showing an overactivation of the kynurenine pathway in the BDNFMet/Met mice may suggest a possible mechanism underlying the cognitive deficits reported in the BDNF Val66Met carriers.File | Dimensione | Formato | |
---|---|---|---|
Ieraci 1-s2.0-S0889159120301252-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.