It has been long recognized that dual-energy imaging could help to enhance the detectability of lesions in diagnostic radiology, by removing the contrast of surrounding tissues. Furthermore, X-ray attenuation is material specific and information about the object constituents can be extracted for tissue characterisation, i.e., to assess whether lesions represent a malignant or benign process. However, a true separation between the low and high energy components is not possible with conventional sources because of their broad X-ray spectrum, and the artifacts produced in the subtracted image can be only partially removed. Finally, dose issues have also prevented so far the application of dual-energy techniques within the clinical context. Very recently, a new intense and monochromatic X-ray source was proposed to fill the gap between a synchrotron radiation facility and the standard X-ray tube. Indeed, inverse Compton scattering (ICS) sources, which are based on the interaction of a powerful laser beam and a bright beam of relativistic electrons, are among the most promising innovative sources of monochromatic X and gamma radiation. In this contribution, we review the main features that allow an ICS source to meet the requirements of a medical imaging application. Specific examples of K-edge subtraction are then provided, to show the potential of ICS in clinical applications that require intravenous injection of a contrast medium.
Dual-Energy X-ray Medical Imaging with Inverse Compton Sources: A Simulation Study
Paternò, GianfrancoPrimo
;Cardarelli, Paolo
Secondo
;Gambaccini, MauroPenultimo
;Taibi, AngeloUltimo
2020
Abstract
It has been long recognized that dual-energy imaging could help to enhance the detectability of lesions in diagnostic radiology, by removing the contrast of surrounding tissues. Furthermore, X-ray attenuation is material specific and information about the object constituents can be extracted for tissue characterisation, i.e., to assess whether lesions represent a malignant or benign process. However, a true separation between the low and high energy components is not possible with conventional sources because of their broad X-ray spectrum, and the artifacts produced in the subtracted image can be only partially removed. Finally, dose issues have also prevented so far the application of dual-energy techniques within the clinical context. Very recently, a new intense and monochromatic X-ray source was proposed to fill the gap between a synchrotron radiation facility and the standard X-ray tube. Indeed, inverse Compton scattering (ICS) sources, which are based on the interaction of a powerful laser beam and a bright beam of relativistic electrons, are among the most promising innovative sources of monochromatic X and gamma radiation. In this contribution, we review the main features that allow an ICS source to meet the requirements of a medical imaging application. Specific examples of K-edge subtraction are then provided, to show the potential of ICS in clinical applications that require intravenous injection of a contrast medium.File | Dimensione | Formato | |
---|---|---|---|
crystals-10-00834.pdf
accesso aperto
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.