We study the Γ-convergence of the functionals Fn(u):=||f(⋅,u(⋅),Du(⋅))||pjavax.xml.bind.JAXBElement@6ece79ac(⋅) and [Formula presented] defined on X∈{L1(Ω,Rd),L∞(Ω,Rd),C(Ω,Rd)} (endowed with their usual norms) with effective domain the Sobolev space W1,pjavax.xml.bind.JAXBElement@1ca77a93(⋅)(Ω,Rd). Here Ω⊆RN is a bounded open set, N,d≥1 and the measurable functions pn:Ω→[1,+∞) satisfy the conditions ess supΩpn≤βess infΩpn<+∞ for a fixed constant β>1 and ess infΩpn→+∞ as n→+∞. We show that when f(x,u,⋅) is level convex and lower semicontinuous and it satisfies a uniform growth condition from below, then, as n→∞, the sequence (Fn)nΓ-converges in X to the functional F represented as F(u)=||f(⋅,u(⋅),Du(⋅))||∞ on the effective domain W1,∞(Ω,Rd). Moreover we show that the Γ-limnFn is given by the functional F(u):=0if||f(⋅,u(⋅),Du(⋅))||∞≤1,+∞otherwiseinX.
Γ-convergence for power-law functionals with variable exponents
Eleuteri M.
Primo
;Prinari F.
Ultimo
2021
Abstract
We study the Γ-convergence of the functionals Fn(u):=||f(⋅,u(⋅),Du(⋅))||pjavax.xml.bind.JAXBElement@6ece79ac(⋅) and [Formula presented] defined on X∈{L1(Ω,Rd),L∞(Ω,Rd),C(Ω,Rd)} (endowed with their usual norms) with effective domain the Sobolev space W1,pjavax.xml.bind.JAXBElement@1ca77a93(⋅)(Ω,Rd). Here Ω⊆RN is a bounded open set, N,d≥1 and the measurable functions pn:Ω→[1,+∞) satisfy the conditions ess supΩpn≤βess infΩpn<+∞ for a fixed constant β>1 and ess infΩpn→+∞ as n→+∞. We show that when f(x,u,⋅) is level convex and lower semicontinuous and it satisfies a uniform growth condition from below, then, as n→∞, the sequence (Fn)nΓ-converges in X to the functional F represented as F(u)=||f(⋅,u(⋅),Du(⋅))||∞ on the effective domain W1,∞(Ω,Rd). Moreover we show that the Γ-limnFn is given by the functional F(u):=0if||f(⋅,u(⋅),Du(⋅))||∞≤1,+∞otherwiseinX.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1468121820301395-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
949.58 kB
Formato
Adobe PDF
|
949.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.