Microalgae are photosynthetic microorganisms and are considered excellent candidates for a wide range of biotechnological applications, including the removal of nutrients from urban wastewaters, which they can recover and convert into biomass. Microalgae-based systems can be integrated into conventional urban wastewater treatment plants (WW-TP) to improve the water depuration process. However, microalgal strain selection represents a crucial step for effective phytoremediation. In this work, a microalga isolated from the effluent derived from the thickening stage of waste sludge of an urban WW-TP was selected and tested to highlight its potential for nutrient removal. Ammonium and phosphate abatements by microalgae were evaluated using both the effluent and a synthetic medium in a comparative approach. Parallelly, the isolate was characterized in terms of growth capability, morphology, photosynthetic pigment content and photosystem II maximum quantum yield. The isolated microalga showed surprisingly high biomass yield and removal efficiency of both ammonium and phosphate ions from the effluent but not from the synthetic medium. This suggests its clear preference to grow in the effluent, linked to the overall characteristics of this matrix. Moreover, biomass from microalgae cultivated in wastewater was enriched in photosynthetic pigments, polyphosphates, proteins and starch, but not lipids, suggesting its possible use as a biofertilizer.

Removal of nitrogen and phosphorus from thickening effluent of an urban wastewater treatment plant by an isolated green microalga

Baldisserotto C.
Primo
Writing – Original Draft Preparation
;
Demaria S.
Secondo
Investigation
;
Marchesini R.
Investigation
;
Maglie M.
Investigation
;
Ferroni L.
Penultimo
Investigation
;
Pancaldi S.
Ultimo
Supervision
2020

Abstract

Microalgae are photosynthetic microorganisms and are considered excellent candidates for a wide range of biotechnological applications, including the removal of nutrients from urban wastewaters, which they can recover and convert into biomass. Microalgae-based systems can be integrated into conventional urban wastewater treatment plants (WW-TP) to improve the water depuration process. However, microalgal strain selection represents a crucial step for effective phytoremediation. In this work, a microalga isolated from the effluent derived from the thickening stage of waste sludge of an urban WW-TP was selected and tested to highlight its potential for nutrient removal. Ammonium and phosphate abatements by microalgae were evaluated using both the effluent and a synthetic medium in a comparative approach. Parallelly, the isolate was characterized in terms of growth capability, morphology, photosynthetic pigment content and photosystem II maximum quantum yield. The isolated microalga showed surprisingly high biomass yield and removal efficiency of both ammonium and phosphate ions from the effluent but not from the synthetic medium. This suggests its clear preference to grow in the effluent, linked to the overall characteristics of this matrix. Moreover, biomass from microalgae cultivated in wastewater was enriched in photosynthetic pigments, polyphosphates, proteins and starch, but not lipids, suggesting its possible use as a biofertilizer.
2020
Baldisserotto, C.; Demaria, S.; Accoto, O.; Marchesini, R.; Zanella, M.; Benetti, L.; Avolio, F.; Maglie, M.; Ferroni, L.; Pancaldi, S.
File in questo prodotto:
File Dimensione Formato  
plants-09-01802-v3.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 366.28 kB
Formato Adobe PDF
366.28 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2430961
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact