Periodic or quasi-periodic arrangements of artificial structures can be used to design a class of materials, i.e., metamaterials, with intriguing properties. Recently, it has been proposed to use periodic systems with internal resonances for the attenuation of acoustic/seismic waves. However, large input displacements due to seismic waves can drive the working point of these systems in a nonlinear regime. Here, we have studied the nonlinear dynamics of periodic chain of mass-in-mass systems, which can be used to model composite foundations, where the external spring is characterized by an anharmonic potential. The main finding of this work is the identification of two attenuation mechanisms, one is characterized by an exponential amplitude decay and is observed in the strongly anharmonic regime, whereas the other has a linear decay pattern and characterizes the weak anharmonic dynamics. This result has a direct impact in the design of low frequency seismic metamaterials.

Wave amplitude decay driven by anharmonic potential in nonlinear mass-in-mass systems

Zivieri R.
Writing – Review & Editing
;
2020

Abstract

Periodic or quasi-periodic arrangements of artificial structures can be used to design a class of materials, i.e., metamaterials, with intriguing properties. Recently, it has been proposed to use periodic systems with internal resonances for the attenuation of acoustic/seismic waves. However, large input displacements due to seismic waves can drive the working point of these systems in a nonlinear regime. Here, we have studied the nonlinear dynamics of periodic chain of mass-in-mass systems, which can be used to model composite foundations, where the external spring is characterized by an anharmonic potential. The main finding of this work is the identification of two attenuation mechanisms, one is characterized by an exponential amplitude decay and is observed in the strongly anharmonic regime, whereas the other has a linear decay pattern and characterizes the weak anharmonic dynamics. This result has a direct impact in the design of low frequency seismic metamaterials.
2020
Fiore, S.; Finocchio, G.; Zivieri, R.; Chiappini, M.; Garescì, F.
File in questo prodotto:
File Dimensione Formato  
Appl_Phys_Lett_117_124101_2020.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2430761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact