In the present paper, we analyze the final part of the Southern Gas Corridor, a route highlighted in the European energy security and energy union strategies. This route crosses one of the most seismically active zones of theMediterranean with several recognized crustal-scale seismogenic sources. We focus on the possibility of identifying the areas where critical differential motions could be expected along the route,which will be occupied by the Trans Adriatic Pipeline, over the nominal pipeline life span of 50 yr.We analyze the available global navigation satellite system data and compare the results to the deformation patterns of the most significant faults affecting the area.We interpolated the sparsely available velocity vectors and calculated strain rate information, both considering the region as a continuum and by applying an original algorithmthat allows the linear interpolation within individual blocks. The blocks are characterized by a relatively homogenous deformational behavior, or a specific tectonic setting, independently upon the neighboring ones. The results of the two methods are then compared by calculating the maximum displacement that would cumulate in the next 50 yr of the pipeline lifespan and the differential displacements that could cause possible bending phenomena to the pipeline structure. The methodological approach followed in this research could be applied to other infrastructures to identify the segments prone to localized deformation because of interseismic tectonic loading.

Analysis of global navigation satellite system data along the Southern Gas Corridor and estimate of the expected displacements

Caputo R.
Secondo
;
Maggini M.;
2020

Abstract

In the present paper, we analyze the final part of the Southern Gas Corridor, a route highlighted in the European energy security and energy union strategies. This route crosses one of the most seismically active zones of theMediterranean with several recognized crustal-scale seismogenic sources. We focus on the possibility of identifying the areas where critical differential motions could be expected along the route,which will be occupied by the Trans Adriatic Pipeline, over the nominal pipeline life span of 50 yr.We analyze the available global navigation satellite system data and compare the results to the deformation patterns of the most significant faults affecting the area.We interpolated the sparsely available velocity vectors and calculated strain rate information, both considering the region as a continuum and by applying an original algorithmthat allows the linear interpolation within individual blocks. The blocks are characterized by a relatively homogenous deformational behavior, or a specific tectonic setting, independently upon the neighboring ones. The results of the two methods are then compared by calculating the maximum displacement that would cumulate in the next 50 yr of the pipeline lifespan and the differential displacements that could cause possible bending phenomena to the pipeline structure. The methodological approach followed in this research could be applied to other infrastructures to identify the segments prone to localized deformation because of interseismic tectonic loading.
2020
Rossi, G.; Caputo, R.; Zuliani, D.; Fabris, P.; Maggini, M.; Karvelis, P.
File in questo prodotto:
File Dimensione Formato  
2020_Rossi_et_alii_EnvGeosci.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2430557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact