We report broadband ferromagnetic resonance measurements of the in-plane magnetic field response of three- and four-fold symmetric vertices formed by non-contacting permalloy nano-ellipses together with extended lattices constructed from them. Complementing the experimental data with simulations, we are able to show that, as far as the most intense FMR responses are concerned, the spectra of vertices and lattices can largely be interpreted in terms of a superposition of the underlying hysteretic responses of the individual ellipses, as elemental building blocks of the system. This property suggest that it is possible to understand the orientation of the individual magnetic dipole moments in a dipole network in terms of dynamic measurements alone, thereby offering a powerful tool to analyze the alignment statistics in frustrated systems that are exposed to various magnetic histories.

Ferromagnetic resonance in single vertices and 2D lattices macro-dipoles of elongated nanoelements: Measurements and simulations

Silvani R.
Co-primo
;
Montoncello F.
Penultimo
;
2021

Abstract

We report broadband ferromagnetic resonance measurements of the in-plane magnetic field response of three- and four-fold symmetric vertices formed by non-contacting permalloy nano-ellipses together with extended lattices constructed from them. Complementing the experimental data with simulations, we are able to show that, as far as the most intense FMR responses are concerned, the spectra of vertices and lattices can largely be interpreted in terms of a superposition of the underlying hysteretic responses of the individual ellipses, as elemental building blocks of the system. This property suggest that it is possible to understand the orientation of the individual magnetic dipole moments in a dipole network in terms of dynamic measurements alone, thereby offering a powerful tool to analyze the alignment statistics in frustrated systems that are exposed to various magnetic histories.
2021
Bang, W.; Silvani, R.; Hoffmann, A.; Ketterson, J. B.; Montoncello, F.; Jungfleisch, M. B.
File in questo prodotto:
File Dimensione Formato  
Bang_2021_J._Phys.__Condens._Matter_33_065803.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.11 MB
Formato Adobe PDF
4.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2429470
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact