Combining elastic incoherent neutron scattering and differential scanning calorimetry, we investigate the occurrence of the volume phase transition (VPT) in very concentrated poly-(N-isopropyl-acrylamide) (PNIPAM) microgel suspensions, from a polymer weight fraction of 30 wt. % up to dry conditions. Although samples are arrested at the macroscopic scale, atomic degrees of freedom are equilibrated and can be probed in a reproducible way. A clear signature of the VPT is present as a sharp drop in the mean square displacement of PNIPAM hydrogen atoms obtained by neutron scattering. As a function of concentration, the VPT gets smoother as dry conditions are approached, whereas the VPT temperature shows a minimum at about 43 wt. %. This behavior is qualitatively confirmed by calorimetry measurements. Molecular dynamics simulations are employed to complement experimental results and gain further insights into the nature of the VPT, confirming that it involves the formation of an attractive gel state between the microgels. Overall, these results provide evidence that the VPT in PNIPAM-based systems can be detected at different time- and length-scales as well as under overcrowded conditions.

Atomic scale investigation of the volume phase transition in concentrated PNIPAM microgels

Buratti E.;Bertoldo M.
Conceptualization
;
2020

Abstract

Combining elastic incoherent neutron scattering and differential scanning calorimetry, we investigate the occurrence of the volume phase transition (VPT) in very concentrated poly-(N-isopropyl-acrylamide) (PNIPAM) microgel suspensions, from a polymer weight fraction of 30 wt. % up to dry conditions. Although samples are arrested at the macroscopic scale, atomic degrees of freedom are equilibrated and can be probed in a reproducible way. A clear signature of the VPT is present as a sharp drop in the mean square displacement of PNIPAM hydrogen atoms obtained by neutron scattering. As a function of concentration, the VPT gets smoother as dry conditions are approached, whereas the VPT temperature shows a minimum at about 43 wt. %. This behavior is qualitatively confirmed by calorimetry measurements. Molecular dynamics simulations are employed to complement experimental results and gain further insights into the nature of the VPT, confirming that it involves the formation of an attractive gel state between the microgels. Overall, these results provide evidence that the VPT in PNIPAM-based systems can be detected at different time- and length-scales as well as under overcrowded conditions.
2020
Zanatta, M.; Tavagnacco, L.; Buratti, E.; Chiessi, E.; Natali, F.; Bertoldo, M.; Orecchini, A.; Zaccarelli, E.
File in questo prodotto:
File Dimensione Formato  
Zanatta2020.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2008.00241.pdf

accesso aperto

Descrizione: versione preprint
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2427355
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact