Rheological characterization through capillary viscometry of molten polymers that slip at solid walls is quite a challenging task. In fact, it is based on an indirect measurement that introduces remarkable error amplifications, mainly because of the Mooney procedure. Sometimes these are so large that unphysical results are obtained. In this paper we study these issues analytically, using a particular power law fluid as a test model. Interestingly, it is found that there is dependence on the fluid characteristics, such as the shear thinning behavior. Two software programs are provided in the Mendeley Data Repository. One quantifies the error amplification, the other one can be used by interested researchers for properly designing the testing setup (e.g. the most convenient choice for the capillary diameters). In order to use the programs, though, the material constants of the fluid that is intended to be characterized must be known at least approximately.
Error amplification in capillary viscometry of power law fluids with slip
Malagutti L.Primo
;Mollica F.Secondo
;Mazzanti V.
Ultimo
2020
Abstract
Rheological characterization through capillary viscometry of molten polymers that slip at solid walls is quite a challenging task. In fact, it is based on an indirect measurement that introduces remarkable error amplifications, mainly because of the Mooney procedure. Sometimes these are so large that unphysical results are obtained. In this paper we study these issues analytically, using a particular power law fluid as a test model. Interestingly, it is found that there is dependence on the fluid characteristics, such as the shear thinning behavior. Two software programs are provided in the Mendeley Data Repository. One quantifies the error amplification, the other one can be used by interested researchers for properly designing the testing setup (e.g. the most convenient choice for the capillary diameters). In order to use the programs, though, the material constants of the fluid that is intended to be characterized must be known at least approximately.File | Dimensione | Formato | |
---|---|---|---|
2020.error amplification.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.