Purpose: Insulin-like growth factor 1 (IGF1) controls growth hormone (GH) secretion via a negative feed-back loop that may disclose novel mechanisms possibly useful to control GH hyper-secretion. Our aim was to understand whether PI3K/Akt/mTOR pathway is involved in IGF1 negative feedback on GH secretion. Methods: Cell viability, GH secretion, Akt, and Erk 1/2 phosphorylation levels in the rat GH3 cell line were assessed under treatment with IGF1 and/or everolimus, an mTOR inhitior. Results: We found that IGF1 improves rat GH3 somatotroph cell viability via the PI3K/Akt/mTOR pathway and confirmed that IGF1 exerts a negative feedback on GH secretion by a transcriptional mechanism. We demonstrated that the negative IGF1 loop on GH secretion requires Akt activation that seems to play a pivotal role in the control of GH secretion. Furthermore, Akt activation is independent of PI3K and probably mediated by mTORC2. In addition, we found that Erk 1/2 is not involved in GH3 cell viability regulation, but may have a role in controlling GH secretion, independently of IGF1. Conclusion: Our data confirm that mTOR inhibitors may be useful to reduce pituitary adenoma cell viability, while Erk 1/2 pathway may be considered as a useful therapeutic target to control GH secretion. Our results open the field for further studies searching for effective drugs to control GH hyper-secretion.

PI3K/Akt/mTOR pathway involvement in regulating growth hormone secretion in a rat pituitary adenoma cell line

Di Pasquale C.
Primo
;
Gentilin E.
Secondo
;
Falletta S.;Bellio M.;Buratto M.;degli Uberti E.
Penultimo
;
Chiara Zatelli M.
Ultimo
2018

Abstract

Purpose: Insulin-like growth factor 1 (IGF1) controls growth hormone (GH) secretion via a negative feed-back loop that may disclose novel mechanisms possibly useful to control GH hyper-secretion. Our aim was to understand whether PI3K/Akt/mTOR pathway is involved in IGF1 negative feedback on GH secretion. Methods: Cell viability, GH secretion, Akt, and Erk 1/2 phosphorylation levels in the rat GH3 cell line were assessed under treatment with IGF1 and/or everolimus, an mTOR inhitior. Results: We found that IGF1 improves rat GH3 somatotroph cell viability via the PI3K/Akt/mTOR pathway and confirmed that IGF1 exerts a negative feedback on GH secretion by a transcriptional mechanism. We demonstrated that the negative IGF1 loop on GH secretion requires Akt activation that seems to play a pivotal role in the control of GH secretion. Furthermore, Akt activation is independent of PI3K and probably mediated by mTORC2. In addition, we found that Erk 1/2 is not involved in GH3 cell viability regulation, but may have a role in controlling GH secretion, independently of IGF1. Conclusion: Our data confirm that mTOR inhibitors may be useful to reduce pituitary adenoma cell viability, while Erk 1/2 pathway may be considered as a useful therapeutic target to control GH secretion. Our results open the field for further studies searching for effective drugs to control GH hyper-secretion.
2018
Di Pasquale, C.; Gentilin, E.; Falletta, S.; Bellio, M.; Buratto, M.; degli Uberti, E.; Chiara Zatelli, M.
File in questo prodotto:
File Dimensione Formato  
DiPasquale2018_Article_PI3KAktMTORPathwayInvolvementI.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2421651
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact