The main purpose of this paper is to show that in a three-dimensional exterior Lipschitz domain (Formula presented.) the stationary Navier–Stokes equations have a solution which converges at infinity to a constant vector and assumes a boundary value (Formula presented.) (or (Formula presented.) if Omega is of class (Formula presented.)), provided (Formula presented.). Moreover, for large value of the viscosity u we prove existence, uniqueness and asymptotics of a solution (Formula presented.) for Omega and a polar symmetric.

On the stationary Navier–Stokes problem in 3D exterior domains

Coscia Vincenzo
Primo
;
2020

Abstract

The main purpose of this paper is to show that in a three-dimensional exterior Lipschitz domain (Formula presented.) the stationary Navier–Stokes equations have a solution which converges at infinity to a constant vector and assumes a boundary value (Formula presented.) (or (Formula presented.) if Omega is of class (Formula presented.)), provided (Formula presented.). Moreover, for large value of the viscosity u we prove existence, uniqueness and asymptotics of a solution (Formula presented.) for Omega and a polar symmetric.
Coscia, Vincenzo; Russo, Remigio; Tartaglione, Alfonsina
File in questo prodotto:
File Dimensione Formato  
Coscia V., Russo R., Tartaglione A., On the stationary Navier Stokes problem in 3D exterior domains (2018).pdf

solo gestori archivio

Descrizione: Editoriale first on line
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2420886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact