A pentacyclic quinoid dye, KuQ(O)3OH, combining (i) extended visible absorption up to 600 nm, (ii) excited state reduction potential >2 V vs. NHE, and (iii) a photoinduced proton-coupled electron transfer mechanism, has been used for the fabrication of dye-sensitized SnO2 photoanodes integrating a ruthenium polyoxometalate water oxidation catalyst. The resulting photoelectrode SnO2|KuQ(O)3OH|Ru4POM displays a light harvesting efficiency up to 90% in the range 500-600 nm, an onset potential as low as 0.2 V vs. NHE at pH 5.8, photoinduced oxygen evolution with a faradaic efficiency of 70 ± 15% and an absorbed-photon-to-current efficiency up to 0.12 ± 0.01%.
Photoanodes for water oxidation with visible light based on a pentacyclic quinoid organic dye enabling proton-coupled electron transfer
Serena Berardi
;Stefano Caramori;
2020
Abstract
A pentacyclic quinoid dye, KuQ(O)3OH, combining (i) extended visible absorption up to 600 nm, (ii) excited state reduction potential >2 V vs. NHE, and (iii) a photoinduced proton-coupled electron transfer mechanism, has been used for the fabrication of dye-sensitized SnO2 photoanodes integrating a ruthenium polyoxometalate water oxidation catalyst. The resulting photoelectrode SnO2|KuQ(O)3OH|Ru4POM displays a light harvesting efficiency up to 90% in the range 500-600 nm, an onset potential as low as 0.2 V vs. NHE at pH 5.8, photoinduced oxygen evolution with a faradaic efficiency of 70 ± 15% and an absorbed-photon-to-current efficiency up to 0.12 ± 0.01%.File | Dimensione | Formato | |
---|---|---|---|
Chem Commun 2020 56 2248-2251.pdf
solo gestori archivio
Descrizione: Articolo principale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10.1039@C9CC09805D.pdf
accesso aperto
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.