The massive wireless networks (MWNs) enable surging applications for the Internet of Things and cyber physical systems. In these applications, nodes typically exhibit stringent power constraints, limited computing capabilities, and sporadic traffic patterns. This paper develops a spatiotemporal model to characterize and design uncoordinated multiple access (UMA) strategies for MWNs. By combining stochastic geometry and queueing theory, the paper quantifies the scalability of UMA via the maximum spatiotemporal traffic density that can be accommodated in the network, while satisfying the target operational constraints (e.g., stability) for a given percentile of the nodes. The developed framework is then used to design UMA strategies that stabilize the node data buffers and achieve desirable latency, buffer size, and data rate.

Uncoordinated Massive Wireless Networks: Spatiotemporal Models and Multiaccess Strategies

Chisci G.
;
Conti A.;
2019

Abstract

The massive wireless networks (MWNs) enable surging applications for the Internet of Things and cyber physical systems. In these applications, nodes typically exhibit stringent power constraints, limited computing capabilities, and sporadic traffic patterns. This paper develops a spatiotemporal model to characterize and design uncoordinated multiple access (UMA) strategies for MWNs. By combining stochastic geometry and queueing theory, the paper quantifies the scalability of UMA via the maximum spatiotemporal traffic density that can be accommodated in the network, while satisfying the target operational constraints (e.g., stability) for a given percentile of the nodes. The developed framework is then used to design UMA strategies that stabilize the node data buffers and achieve desirable latency, buffer size, and data rate.
2019
Chisci, G.; Elsawy, H.; Conti, A.; Alouini, M. -S.; Win, M. Z.
File in questo prodotto:
File Dimensione Formato  
2019-ChiElSConAloWin-Uncoordinated Massive Wireless Networks= Spatiotemporal Models and Multiaccess Strategies.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2417529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 38
social impact