Context. Fast radio bursts (FRBs) are millisecond-long bursts uniquely detected at radio frequencies. FRB 131104 is the only case for which a γ-ray transient positionally and temporally consistent was claimed. This high-energy transient had a duration of ∼400 s and a 15-150 keV fluence Sγ ∼ 4 × 10-6 erg cm-2. However, the association with the FRB is still debated. Aims. We aim at testing the systematic presence of an associated transient high-energy counterpart throughout a sample of the FRB population. Methods. We used an approach like that used in machine learning methodologies to accurately model the highly-variable Fermi/GBM instrumental background on a time interval comparable to the duration of the proposed γ-ray counterpart of FRB 131104. A possible γ-ray signal is then constrained considering sample average lightcurves. Results. We constrain the fluence of the possible γ-ray signal in the 8-1000 keV band down to 6.4 × 10-7 (7.1 × 10-8) erg cm-2 for a 200-s (1-s) integration time. Furthermore, we found the radio-to-gamma fluence ratio to be η > 108 Jy ms erg-1 cm2. Conclusions. Our fluence limits exclude ∼94% of Fermi/GBM detected long gamma-ray bursts and ∼96% of Fermi/GBM detected short gamma-ray bursts. In addition, our limits on the radio-to-gamma fluence ratio point to a different emission mechanism from that of magnetar giant flares. Finally, we exclude a γ-ray counterpart as fluent as the one possibly associated with FRB 131104 to be a common feature of FRBs.

A cumulative search for hard X/ γ -ray emission associated with fast radio bursts in Fermi /GBM data

R. Martone
Primo
;
C. Guidorzi
Secondo
;
NICASTRO, Luciano;L. Amati;F. Frontera;M. Marongiu;E. Virgilli
Ultimo
2019

Abstract

Context. Fast radio bursts (FRBs) are millisecond-long bursts uniquely detected at radio frequencies. FRB 131104 is the only case for which a γ-ray transient positionally and temporally consistent was claimed. This high-energy transient had a duration of ∼400 s and a 15-150 keV fluence Sγ ∼ 4 × 10-6 erg cm-2. However, the association with the FRB is still debated. Aims. We aim at testing the systematic presence of an associated transient high-energy counterpart throughout a sample of the FRB population. Methods. We used an approach like that used in machine learning methodologies to accurately model the highly-variable Fermi/GBM instrumental background on a time interval comparable to the duration of the proposed γ-ray counterpart of FRB 131104. A possible γ-ray signal is then constrained considering sample average lightcurves. Results. We constrain the fluence of the possible γ-ray signal in the 8-1000 keV band down to 6.4 × 10-7 (7.1 × 10-8) erg cm-2 for a 200-s (1-s) integration time. Furthermore, we found the radio-to-gamma fluence ratio to be η > 108 Jy ms erg-1 cm2. Conclusions. Our fluence limits exclude ∼94% of Fermi/GBM detected long gamma-ray bursts and ∼96% of Fermi/GBM detected short gamma-ray bursts. In addition, our limits on the radio-to-gamma fluence ratio point to a different emission mechanism from that of magnetar giant flares. Finally, we exclude a γ-ray counterpart as fluent as the one possibly associated with FRB 131104 to be a common feature of FRBs.
2019
Martone, R.; Guidorzi, C.; Margutti, R.; Nicastro, Luciano; Amati, L.; Frontera, F.; Marongiu, M.; Orlandini, M.; Virgilli, E.
File in questo prodotto:
File Dimensione Formato  
martone19_aa.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1909.07165.pdf

accesso aperto

Descrizione: Post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2417066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact