The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb−1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+→ J/ψ(e+e−)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%.

Measurement of the electron reconstruction efficiency at LHCb

Calabrese, R.;Capriotti, L.;Fiorini, M.;Luppi, E.;Minzoni, L.;Pappalardo, L. L.;Skiba, I.;Tomassetti, L.;
2019

Abstract

The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb−1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+→ J/ψ(e+e−)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%.
2019
Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C. A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; Albicocco, P.;...espandi
File in questo prodotto:
File Dimensione Formato  
Aaij_2019_J._Inst._14_P11023.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 866 kB
Formato Adobe PDF
866 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2416771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact