As cellular metabolism is a key regulator of hematopoietic stem cell (HSC) self-renewal, the various roles played by the mitochondria in hematopoietic homeostasis have been extensively studied by HSC researchers. Mitochondrial activity levels are reflected in their membrane potentials (ΔΨm), which can be measured by cell-permeant cationic dyes such as TMRM (tetramethylrhodamine, methyl ester). The ability of efflux pumps to extrude these dyes from cells can limit their usefulness, however. The resulting measurement bias is particularly critical when assessing HSCs, as xenobiotic transporters exhibit higher levels of expression and activity in HSCs than in differentiated cells. Here, we describe a protocol utilizing Verapamil, an efflux pump inhibitor, to accurately measure ΔΨm across multiple bone marrow populations. The resulting inhibition of pump activity is shown to increase TMRM intensity in hematopoietic stem and progenitor cells (HSPCs), while leaving it relatively unchanged in mature fractions. This highlights the close attention to dye-efflux activity that is required when ΔΨm-dependent dyes are used, and as written and visualized, this protocol can be used to accurately compare either different populations within the bone marrow, or the same population across different experimental models.
Improving the Accuracy of Flow Cytometric Assessment of Mitochondrial Membrane Potential in Hematopoietic Stem and Progenitor Cells Through the Inhibition of Efflux Pumps
Morganti C.Primo
;Bonora M.Secondo
;
2019
Abstract
As cellular metabolism is a key regulator of hematopoietic stem cell (HSC) self-renewal, the various roles played by the mitochondria in hematopoietic homeostasis have been extensively studied by HSC researchers. Mitochondrial activity levels are reflected in their membrane potentials (ΔΨm), which can be measured by cell-permeant cationic dyes such as TMRM (tetramethylrhodamine, methyl ester). The ability of efflux pumps to extrude these dyes from cells can limit their usefulness, however. The resulting measurement bias is particularly critical when assessing HSCs, as xenobiotic transporters exhibit higher levels of expression and activity in HSCs than in differentiated cells. Here, we describe a protocol utilizing Verapamil, an efflux pump inhibitor, to accurately measure ΔΨm across multiple bone marrow populations. The resulting inhibition of pump activity is shown to increase TMRM intensity in hematopoietic stem and progenitor cells (HSPCs), while leaving it relatively unchanged in mature fractions. This highlights the close attention to dye-efflux activity that is required when ΔΨm-dependent dyes are used, and as written and visualized, this protocol can be used to accurately compare either different populations within the bone marrow, or the same population across different experimental models.File | Dimensione | Formato | |
---|---|---|---|
nihms-1050785.pdf
accesso aperto
Descrizione: versione post print
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
694.92 kB
Formato
Adobe PDF
|
694.92 kB | Adobe PDF | Visualizza/Apri |
2019.Bonora-improving accuracy.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
506.09 kB
Formato
Adobe PDF
|
506.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.