A closed subscheme of codimension two T⊂P2 is a quasi complete intersection (q.c.i.) of type (a,b,c) if there exists a surjective morphism O(−a)⊕O(−b)⊕O(−c)→IT. We give bounds on deg⁡(T) in function of a,b,c and r, the least degree of a syzygy between the three polynomials defining the q.c.i. (see Theorem 6). As a by-product we recover a theorem of du Plessis-Wall on the global Tjurina number of plane curves (see Theorem 20) and some other related results.

Quasi-complete intersections and global Tjurina number of plane curves

Ellia P.
Primo
2020

Abstract

A closed subscheme of codimension two T⊂P2 is a quasi complete intersection (q.c.i.) of type (a,b,c) if there exists a surjective morphism O(−a)⊕O(−b)⊕O(−c)→IT. We give bounds on deg⁡(T) in function of a,b,c and r, the least degree of a syzygy between the three polynomials defining the q.c.i. (see Theorem 6). As a by-product we recover a theorem of du Plessis-Wall on the global Tjurina number of plane curves (see Theorem 20) and some other related results.
2020
Ellia, P.
File in questo prodotto:
File Dimensione Formato  
Ellia-Tjurina-arXiv(1).pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 182.14 kB
Formato Adobe PDF
182.14 kB Adobe PDF Visualizza/Apri
1-s2.0-S002240491930132X-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 312.98 kB
Formato Adobe PDF
312.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2416333
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact