A closed subscheme of codimension two T⊂P2 is a quasi complete intersection (q.c.i.) of type (a,b,c) if there exists a surjective morphism O(−a)⊕O(−b)⊕O(−c)→IT. We give bounds on deg(T) in function of a,b,c and r, the least degree of a syzygy between the three polynomials defining the q.c.i. (see Theorem 6). As a by-product we recover a theorem of du Plessis-Wall on the global Tjurina number of plane curves (see Theorem 20) and some other related results.
Quasi-complete intersections and global Tjurina number of plane curves
Ellia P.
Primo
2020
Abstract
A closed subscheme of codimension two T⊂P2 is a quasi complete intersection (q.c.i.) of type (a,b,c) if there exists a surjective morphism O(−a)⊕O(−b)⊕O(−c)→IT. We give bounds on deg(T) in function of a,b,c and r, the least degree of a syzygy between the three polynomials defining the q.c.i. (see Theorem 6). As a by-product we recover a theorem of du Plessis-Wall on the global Tjurina number of plane curves (see Theorem 20) and some other related results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ellia-Tjurina-arXiv(1).pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
182.14 kB
Formato
Adobe PDF
|
182.14 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S002240491930132X-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
312.98 kB
Formato
Adobe PDF
|
312.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.