Aims: Hypertrophic cardiomyopathy(HCM)is a leading cause of sudden cardiac death (SCD) in young adults. Current risk algorithms provide only a crude estimate of risk and fail to account for the different effect size of individual risk factors. The aim of this study was to develop and validate a new SCD risk prediction model that provides individualized risk estimates. Methods and results: The prognostic model was derived from a retrospective, multi-centre longitudinal cohort study. The model was developed fromthe entire data set using theCox proportional hazards model and internally validated using bootstrapping. The cohort consisted of 3675 consecutive patients from six centres. During a follow-up period of 24 313 patient-years (median 5.7 years), 198 patients (5%) died suddenly or had an appropriate implantable cardioverter defibrillator (ICD) shock. Of eight pre-specified predictors, age, maximal left ventricular wall thickness, left atrial diameter, left ventricular outflow tract gradient, family history of SCD, non-sustained ventricular tachycardia, and unexplained syncope were associated with SCD/appropriate ICD shock at the 15% significance level. These predictors were included in the final model to estimate individual probabilities of SCD at 5 years. The calibration slope was 0.91 (95% CI: 0.74, 1.08), C-index was 0.70 (95% CI: 0.68, 0.72), and D-statistic was 1.07 (95% CI: 0.81, 1.32). For every 16 ICDs implanted in patients with ≥4% 5-year SCD risk, potentially 1 patient will be saved from SCD at 5 years. A second model with the data set split into independent development and validation cohorts had very similar estimates of coefficients and performance when externally validated. Conclusion: This is the first validatedSCDrisk prediction model for patients withHCMand provides accurate individualized estimates for the probability of SCD using readily collected clinical parameters
A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD)
Rapezzi C;
2014
Abstract
Aims: Hypertrophic cardiomyopathy(HCM)is a leading cause of sudden cardiac death (SCD) in young adults. Current risk algorithms provide only a crude estimate of risk and fail to account for the different effect size of individual risk factors. The aim of this study was to develop and validate a new SCD risk prediction model that provides individualized risk estimates. Methods and results: The prognostic model was derived from a retrospective, multi-centre longitudinal cohort study. The model was developed fromthe entire data set using theCox proportional hazards model and internally validated using bootstrapping. The cohort consisted of 3675 consecutive patients from six centres. During a follow-up period of 24 313 patient-years (median 5.7 years), 198 patients (5%) died suddenly or had an appropriate implantable cardioverter defibrillator (ICD) shock. Of eight pre-specified predictors, age, maximal left ventricular wall thickness, left atrial diameter, left ventricular outflow tract gradient, family history of SCD, non-sustained ventricular tachycardia, and unexplained syncope were associated with SCD/appropriate ICD shock at the 15% significance level. These predictors were included in the final model to estimate individual probabilities of SCD at 5 years. The calibration slope was 0.91 (95% CI: 0.74, 1.08), C-index was 0.70 (95% CI: 0.68, 0.72), and D-statistic was 1.07 (95% CI: 0.81, 1.32). For every 16 ICDs implanted in patients with ≥4% 5-year SCD risk, potentially 1 patient will be saved from SCD at 5 years. A second model with the data set split into independent development and validation cohorts had very similar estimates of coefficients and performance when externally validated. Conclusion: This is the first validatedSCDrisk prediction model for patients withHCMand provides accurate individualized estimates for the probability of SCD using readily collected clinical parametersI documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.