The performance of pumps when working with non-Newtonian fluids significantly change with respect to water. In several experimental tests with non-Newtonian fluids, significant deration of head and the presence of head instability were observed. The present work aims to better understand this phenomenon since the reasons that originate it are not clear. Two small size centrifugal pumps were experimentally tested with different mixtures of kaolin-in-water, which showed a verified non-Newtonian behavior. The rheology of the mixtures and the particle size distribution of kaolin powder were measured to characterize the fluids. Similar to previous tests, a strong reduction of head and the appearance of instability were observed at low flow rates and, in some cases, also at higher flow rates. This behavior was related to the presence of air trapped into the fluid that, within the pump, generated a phenomenon known as gas-locking, which in literature it has been studied in detail with water but not with non-Newtonian fluids. Moreover, in some working conditions, non-stable time-varying phenomena are observed and their consequence on performance commented. Comparing the two pumps, characterized by a similar specific speed but by a different geometry, the head drop manifested itself with different intensity.
Experimental tests with centrifugal pumps: Degradation of performance, instability and dynamic phenomena with non-Newtonian suspensions of kaolin in water
Occari M.;Pinelli M.;Mollica F.;Mazzanti V.;Suman A.
2019
Abstract
The performance of pumps when working with non-Newtonian fluids significantly change with respect to water. In several experimental tests with non-Newtonian fluids, significant deration of head and the presence of head instability were observed. The present work aims to better understand this phenomenon since the reasons that originate it are not clear. Two small size centrifugal pumps were experimentally tested with different mixtures of kaolin-in-water, which showed a verified non-Newtonian behavior. The rheology of the mixtures and the particle size distribution of kaolin powder were measured to characterize the fluids. Similar to previous tests, a strong reduction of head and the appearance of instability were observed at low flow rates and, in some cases, also at higher flow rates. This behavior was related to the presence of air trapped into the fluid that, within the pump, generated a phenomenon known as gas-locking, which in literature it has been studied in detail with water but not with non-Newtonian fluids. Moreover, in some working conditions, non-stable time-varying phenomena are observed and their consequence on performance commented. Comparing the two pumps, characterized by a similar specific speed but by a different geometry, the head drop manifested itself with different intensity.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.