Herein, we provide a fundamental study revealing the substantial changes promoted by manganese and iron substitution for cobalt in a high-voltage LiCoPO4 olivine cathode. Therefore, LiCoPO4, LiCo0.9Fe0.1PO4, LiCo0.6Fe0.4PO4, LiCo0.9Mn0.1PO4, and LiCo0.6Mn0.4PO4 are synthesized by a sol-gel pathway and comparatively investigated in terms of structure, morphology, and electrochemical features in lithium battery. Besides the observed effects on structure, particle size, and metals distribution, the work reveals a gradually enhancing electrode reaction by increasing the Fe content in LiCo0.9Fe0.1PO4 and LiCo0.6Fe0.4PO4, with Co3+/Co2+ and Fe3+/Fe2+ signatures at 4.8 and 3.5 V vs Li+/Li, respectively. On the other hand, the introduction of Mn leads to a progressive electrode deactivation in LiCo0.9Mn0.1PO4 and LiCo0.6Mn0.4PO4 due to an intrinsic hindering of the Mn3+/Mn2+ process at 4.1 V vs Li+/Li. The reasons accounting for such an intriguing behavior are investigated in detail using electrochemical impedance spectroscopy within the potential range of the redox processes. The study reveals that manganese and iron substitutions in the high-voltage olivine have opposite effects on the charge transfer resistance, i.e., detrimental for the former while beneficial for the latter, with remarkable enhancement of the reversible capacity, the Coulombic efficiency, and the cycle life. Such results provide to the scientific community useful information on possible strategies to enhance the emerging LiCoPO4 high-voltage electrode by transition metal substitution.
Investigation of Mn and Fe Substitution Effects on the Characteristics of High-Voltage LiCo1- xMxPO4 (x = 0.1, 0.4) Cathodes Prepared by Sol-gel Route
Di Lecce D.Primo
;Hassoun J.
Ultimo
2020
Abstract
Herein, we provide a fundamental study revealing the substantial changes promoted by manganese and iron substitution for cobalt in a high-voltage LiCoPO4 olivine cathode. Therefore, LiCoPO4, LiCo0.9Fe0.1PO4, LiCo0.6Fe0.4PO4, LiCo0.9Mn0.1PO4, and LiCo0.6Mn0.4PO4 are synthesized by a sol-gel pathway and comparatively investigated in terms of structure, morphology, and electrochemical features in lithium battery. Besides the observed effects on structure, particle size, and metals distribution, the work reveals a gradually enhancing electrode reaction by increasing the Fe content in LiCo0.9Fe0.1PO4 and LiCo0.6Fe0.4PO4, with Co3+/Co2+ and Fe3+/Fe2+ signatures at 4.8 and 3.5 V vs Li+/Li, respectively. On the other hand, the introduction of Mn leads to a progressive electrode deactivation in LiCo0.9Mn0.1PO4 and LiCo0.6Mn0.4PO4 due to an intrinsic hindering of the Mn3+/Mn2+ process at 4.1 V vs Li+/Li. The reasons accounting for such an intriguing behavior are investigated in detail using electrochemical impedance spectroscopy within the potential range of the redox processes. The study reveals that manganese and iron substitutions in the high-voltage olivine have opposite effects on the charge transfer resistance, i.e., detrimental for the former while beneficial for the latter, with remarkable enhancement of the reversible capacity, the Coulombic efficiency, and the cycle life. Such results provide to the scientific community useful information on possible strategies to enhance the emerging LiCoPO4 high-voltage electrode by transition metal substitution.File | Dimensione | Formato | |
---|---|---|---|
dilecce2019.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.72 MB
Formato
Adobe PDF
|
6.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Investigation.Hassoun2020.Accepted Manuscript.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
2.53 MB
Formato
Adobe PDF
|
2.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.