Heat transfer enhancing surfaces are of interest for a wide range of industrial applications. Theaim of this paper is to provide a robust automated method for the design of two-dimensionalenhanced surfaces. Multi-objective optimization algorithms are employed: the competing objectivesaddressed are the maximization of the heat transfer and the minimization of the pressuredrop for Re = 1000 and Pr = 0:74. The surfaces are parameterized with Bézier curves anda finite volume solver is used for the cfd analysis. The optimization is based on different algorithmsused sequentially. Finally, a robust design assessment analysis is carried out on twoconfigurations.
Optimization of heat exchanger enhanced surfaces through multi-objective genetic algorithms
CAVAZZUTI, Marco;CORTICELLI, Mauro Alessandro
2008
Abstract
Heat transfer enhancing surfaces are of interest for a wide range of industrial applications. Theaim of this paper is to provide a robust automated method for the design of two-dimensionalenhanced surfaces. Multi-objective optimization algorithms are employed: the competing objectivesaddressed are the maximization of the heat transfer and the minimization of the pressuredrop for Re = 1000 and Pr = 0:74. The surfaces are parameterized with Bézier curves anda finite volume solver is used for the cfd analysis. The optimization is based on different algorithmsused sequentially. Finally, a robust design assessment analysis is carried out on twoconfigurations.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.