We provide a sharp double-sided estimate for Poincaré–Sobolev constants on a convex set, in terms of its inradius and N- dimensional measure. Our results extend and unify previous works by Hersch and Protter (for the first eigenvalue) and of Makai, Pólya and Szegő (for the torsional rigidity), by means of a single proof.

On principal frequencies, volume and inradius in convex sets

Brasco L.
Primo
;
2020

Abstract

We provide a sharp double-sided estimate for Poincaré–Sobolev constants on a convex set, in terms of its inradius and N- dimensional measure. Our results extend and unify previous works by Hersch and Protter (for the first eigenvalue) and of Makai, Pólya and Szegő (for the torsional rigidity), by means of a single proof.
2020
Brasco, L.; Mazzoleni, D.
File in questo prodotto:
File Dimensione Formato  
bramaz_final_rev.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 824.95 kB
Formato Adobe PDF
824.95 kB Adobe PDF Visualizza/Apri
Brasco-Mazzoleni2020_Article_OnPrincipalFrequenciesVolumeAn.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 674.78 kB
Formato Adobe PDF
674.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2414232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact