We provide a sharp double-sided estimate for Poincaré–Sobolev constants on a convex set, in terms of its inradius and N- dimensional measure. Our results extend and unify previous works by Hersch and Protter (for the first eigenvalue) and of Makai, Pólya and Szegő (for the torsional rigidity), by means of a single proof.
On principal frequencies, volume and inradius in convex sets
Brasco L.Primo
;
2020
Abstract
We provide a sharp double-sided estimate for Poincaré–Sobolev constants on a convex set, in terms of its inradius and N- dimensional measure. Our results extend and unify previous works by Hersch and Protter (for the first eigenvalue) and of Makai, Pólya and Szegő (for the torsional rigidity), by means of a single proof.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bramaz_final_rev.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
824.95 kB
Formato
Adobe PDF
|
824.95 kB | Adobe PDF | Visualizza/Apri |
Brasco-Mazzoleni2020_Article_OnPrincipalFrequenciesVolumeAn.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
674.78 kB
Formato
Adobe PDF
|
674.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.