Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The decay D+→KS0π+π+π- is studied with an amplitude analysis using a data set of 2.93 fb-1 of e+e- collisions at the ψ(3770) peak accumulated by the BESIII detector. Intermediate states and nonresonant components, and their relative fractions and phases, have been determined. The significant amplitudes, which contribute to the model that best fits the data, are composed of five quasitwo-body decays KS0a1(1260)+, K̄1(1270)0π+ K̄1(1400)0π+, K̄1(1650)0π+, and K̄(1460)0π+, a three-body decay KS0π+ρ0, as well as a nonresonant component KS0π+π+π-. The dominant amplitude is KS0a1(1260)+, with a fit fraction of (40.3±2.1±2.9)%, where the first and second uncertainties are statistical and systematic, respectively.
Amplitude analysis of D+ → KS0 π+π+π-
Ablikim M.;Achasov M. N.;Ahmed S.;Albrecht M.;Alekseev M.;Amoroso A.;An F. F.;An Q.;Bai Y.;Bakina O.;Baldini Ferroli R.;Ban Y.;Begzsuren K.;Bennett J. V.;Berger N.;Bertani M.;Bettoni D.;Bianchi F.;Bloms J.;Boyko I.;Briere R. A.;Cai H.;Cai X.;Calcaterra A.;Cao G. F.;Cao N.;Cetin S. A.;Chai J.;Chang J. F.;Chang W. L.;Chelkov G.;Chen;Chen G.;Chen H. S.;Chen J. C.;Chen M. L.;Chen S. J.;Chen Y. B.;Cheng W.;Cibinetto G.;Cossio F.;Cui X. F.;Dai H. L.;Dai J. P.;Dai X. C.;Dbeyssi A.;Dedovich D.;Deng Z. Y.;Denig A.;Denysenko I.;Destefanis M.;De Mori F.;Ding Y.;Dong C.;Dong J.;Dong L. Y.;Dong M. Y.;Dou Z. L.;Du S. X.;Fan J. Z.;Fang J.;Fang S. S.;Fang Y.;Farinelli R.;Fava L.;Feldbauer F.;Felici G.;Feng C. Q.;Fritsch M.;Fu C. D.;Fu Y.;Gao Q.;Gao X. L.;Gao Y.;Gao Y.;Gao Y. G.;Gao Z.;Garillon B.;Garzia I.;Gilman A.;Goetzen K.;Gong L.;Gong W. X.;Gradl W.;Greco M.;Gu L. M.;Gu M. H.;Gu Y. T.;Guo A. Q.;Guo L. B.;Guo R. P.;Guo Y. P.;Guskov A.;Han S.;Hao X. Q.;Harris F. A.;He K. L.;Heinsius F. H.;Held T.;Heng Y. K.;Hou Y. R.;Hou Z. L.;Hu H. M.;Hu J. F.;Hu T.;Hu Y.;Huang G. S.;Huang J. S.;Huang X. T.;Huang X. Z.;Huang Z. L.;Hussain T.;Hsken N.;Ikegami Andersson W.;Imoehl W.;Irshad M.;Ji Q.;Ji Q. P.;Ji X. B.;Ji X. L.;Jiang H. L.;Jiang X. S.;Jiang X. Y.;Jiao J. B.;Jiao Z.;Jin D. P.;Jin S.;Jin Y.;Johansson T.;Kalantar-Nayestanaki N.;Kang X. S.;Kappert R.;Kavatsyuk M.;Ke B. C.;Keshk I. K.;Khan T.;Khoukaz A.;Kiese P.;Kiuchi R.;Kliemt R.;Koch L.;Kolcu O. B.;Kopf B.;Kuemmel M.;Kuessner M.;Kupsc A.;Kurth M.;Kurth M. G.;Kuhn W.;Lange J. S.;Larin P.;Lavezzi L.;Leithoff H.;Lenz T.;Li C.;Li C.;Li D. M.;Li F.;Li F. Y.;Li G.;Li H. B.;Li H. J.;Li J. C.;Li J. W.;Li K.;Li L. K.;Li L.;Li P. L.;Li P. R.;Li Q. Y.;Li W. D.;Li W. G.;Li X. L.;Li X. N.;Li X. Q.;Li X. H.;Li Z. B.;Liang H.;Liang H.;Liang Y. F.;Liang Y. T.;Liao G. R.;Liao L. Z.;Libby J.;Lin C. X.;Lin D. X.;Lin Y. J.;Liu B.;Liu B. J.;Liu C. X.;Liu D.;Liu D. Y.;Liu F. H.;Liu F.;Liu F.;Liu H. B.;Liu H. M.;Liu H.;Liu H.;Liu J. B.;Liu J. Y.;Liu K. Y.;Liu K.;Liu Q.;Liu S. B.;Liu T.;Liu X.;Liu X. Y.;Liu Y. B.;Liu Z. A.;Liu Z.;Long Y. F.;Lou X. C.;Lu H. J.;Lu J. D.;Lu J. G.;Lu Y.;Lu Y. P.;Luo C. L.;Luo M. X.;Luo P. W.;Luo T.;Luo X. L.;Lusso S.;Lyu X. R.;Ma F. C.;Ma H. L.;Ma L. L.;Ma M. M.;Ma Q. M.;Ma X. N.;Ma X. X.;Ma X. Y.;Ma Y. M.;Maas F. E.;Maggiora M.;Maldaner S.;Malik Q. A.;Mangoni A.;Mao Y. J.;Mao Z. P.;Marcello S.;Meng Z. X.;Messchendorp J. G.;Mezzadri G.;Min J.;Min T. J.;Mitchell R. E.;Mo X. H.;Mo Y. J.;Morales Morales C.;Muchnoi N. Y.;Muramatsu H.;Mustafa A.;Nakhoul S.;Nefedov Y.;Nerling F.;Nikolaev I. B.;Ning Z.;Nisar S.;Niu S. L.;Olsen S. L.;Ouyang Q.;Pacetti S.;Pan Y.;Papenbrock M.;Patteri P.;Pelizaeus M.;Peng H. P.;Peters K.;Pettersson J.;Ping J. L.;Ping R. G.;Pitka A.;Poling R.;Prasad V.;Qi M.;Qi T. Y.;Qian S.;Qiao C. F.;Qin N.;Qin X. P.;Qin X. S.;Qin Z. H.;Qiu J. F.;Qu S. Q.;Rashid K. H.;Redmer C. F.;Richter M.;Ripka M.;Rivetti A.;Rolo M.;Rong G.;Rosner C.;Rump M.;Sarantsev A.;Savrie M.;Schoenning K.;Shan W.;Shan X. Y.;Shao M.;Shen C. P.;Shen P. X.;Shen X. Y.;Sheng H. Y.;Shi X.;Shi X. D.;Song J. J.;Song Q. Q.;Song X. Y.;Sosio S.;Sowa C.;Spataro S.;Sui F. F.;Sun G. X.;Sun J. F.;Sun L.;Sun S. S.;Sun X. H.;Sun Y. J.;Sun Y. K.;Sun Y. Z.;Sun Z. J.;Sun Z. T.;Tan Y. T.;Tang C. J.;Tang G. Y.;Tang X.;Thoren V.;Tsednee B.;Uman I.;Wang B.;Wang B. L.;Wang C. W.;Wang D. Y.;Wang H. H.;Wang K.;Wang L. L.;Wang L. S.;Wang M.;Wang M. Z.;Wang M.;Wang P. L.;Wang R. M.;Wang W. P.;Wang X.;Wang X. F.;Wang Y.;Wang Y. F.;Wang Z.;Wang Z. G.;Wang Z. Y.;Wang Z.;Weber T.;Wei D. H.;Weidenkaff P.;Wen H. W.;Wen S. P.;Wiedner U.;Wolke M.;Wu L. H.;Wu L. J.;Wu Z.;Xia L.;Xia Y.;Xiao S. Y.;Xiao Y. J.;Xiao Z. J.;Xie Y. G.;Xie Y. H.;Xing T. Y.;Xiong X. A.;Xiu Q. L.;Xu G. F.;Xu L.;Xu Q. J.;Xu W.;Xu X. P.;Yan F.;Yan L.;Yan W. B.;Yan W. C.;Yan Y. H.;Yang H. J.;Yang H. X.;Yang L.;Yang R. X.;Yang S. L.;Yang Y. H.;Yang Y. X.;Yang Y.;Yang Z. Q.;Ye M.;Ye M. H.;Yin J. H.;You Z. Y.;Yu B. X.;Yu C. X.;Yu J. S.;Yuan C. Z.;Yuan X. Q.;Yuan Y.;Yuncu A.;Zafar A. A.;Zeng Y.;Zhang B. X.;Zhang B. Y.;Zhang C. C.;Zhang D. H.;Zhang H. H.;Zhang H. Y.;Zhang J.;Zhang J. L.;Zhang J. Q.;Zhang J. W.;Zhang J. Y.;Zhang J. Z.;Zhang K.;Zhang L.;Zhang S. F.;Zhang T. J.;Zhang X. Y.;Zhang Y.;Zhang Y. H.;Zhang Y. T.;Zhang Y.;Zhang Y.;Zhang Y.;Zhang Z. H.;Zhang Z. P.;Zhang Z. Y.;Zhao G.;Zhao J. W.;Zhao J. Y.;Zhao J. Z.;Zhao L.;Zhao L.;Zhao M. G.;Zhao Q.;Zhao S. J.;Zhao T. C.;Zhao Y. B.;Zhao Z. G.;Zhemchugov A.;Zheng B.;Zheng J. P.;Zheng Y.;Zheng Y. H.;Zhong B.;Zhou L.;Zhou L. P.;Zhou Q.;Zhou X.;Zhou X. K.;Zhou X. R.;Zhou X.;Zhou X.;Zhu A. N.;Zhu J.;Zhu J.;Zhu K.;Zhu K. J.;Zhu S. H.;Zhu W. J.;Zhu X. L.;Zhu Y. C.;Zhu Y. S.;Zhu Z. A.;Zhuang J.;Zou B. S.;Zou J. H.
2019
Abstract
The decay D+→KS0π+π+π- is studied with an amplitude analysis using a data set of 2.93 fb-1 of e+e- collisions at the ψ(3770) peak accumulated by the BESIII detector. Intermediate states and nonresonant components, and their relative fractions and phases, have been determined. The significant amplitudes, which contribute to the model that best fits the data, are composed of five quasitwo-body decays KS0a1(1260)+, K̄1(1270)0π+ K̄1(1400)0π+, K̄1(1650)0π+, and K̄(1460)0π+, a three-body decay KS0π+ρ0, as well as a nonresonant component KS0π+π+π-. The dominant amplitude is KS0a1(1260)+, with a fit fraction of (40.3±2.1±2.9)%, where the first and second uncertainties are statistical and systematic, respectively.
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Begzsuren, K.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bloms, J.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Calcaterra, A.; Cao, G. F.; Cao, N.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chang, W. L.; Chelkov, G.; Chen, ; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y. B.; Cheng, W.; Cibinetto, G.; Cossio, F.; Cui, X. F.; Dai, H. L.; Dai, J. P.; Dai, X. C.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fritsch, M.; Fu, C. D.; Fu, Y.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Gilman, A.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, L. M.; Gu, M. H.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Guskov, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Hou, Y. R.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Hsken, N.; Ikegami Andersson, W.; Imoehl, W.; Irshad, M.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, H. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Kalantar-Nayestanaki, N.; Kang, X. S.; Kappert, R.; Kavatsyuk, M.; Ke, B. C.; Keshk, I. K.; Khan, T.; Khoukaz, A.; Kiese, P.; Kiuchi, R.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kuemmel, M.; Kuessner, M.; Kupsc, A.; Kurth, M.; Kurth, M. G.; Kuhn, W.; Lange, J. S.; Larin, P.; Lavezzi, L.; Leithoff, H.; Lenz, T.; Li, C.; Li, C.; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, J. W.; Li, K.; Li, L. K.; Li, L.; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. H.; Li, Z. B.; Liang, H.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, L. Z.; Libby, J.; Lin, C. X.; Lin, D. X.; Lin, Y. J.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, D. Y.; Liu, F. H.; Liu, F.; Liu, F.; Liu, H. B.; Liu, H. M.; Liu, H.; Liu, H.; Liu, J. B.; Liu, J. Y.; Liu, K. Y.; Liu, K.; Liu, Q.; Liu, S. B.; Liu, T.; Liu, X.; Liu, X. Y.; Liu, Y. B.; Liu, Z. A.; Liu, Z.; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. D.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, P. W.; Luo, T.; Luo, X. L.; Lusso, S.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, X. N.; Ma, X. X.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Maldaner, S.; Malik, Q. A.; Mangoni, A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Y.; Muramatsu, H.; Mustafa, A.; Nakhoul, S.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. P.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Qu, S. Q.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rivetti, A.; Rolo, M.; Rong, G.; Rosner, C.; Rump, M.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Shan, W.; Shan, X. Y.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, X.; Shi, X. D.; Song, J. J.; Song, Q. Q.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sui, F. F.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tan, Y. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Thoren, V.; Tsednee, B.; Uman, I.; Wang, B.; Wang, B. L.; Wang, C. W.; Wang, D. Y.; Wang, H. H.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, M. Z.; Wang, M.; Wang, P. L.; Wang, R. M.; Wang, W. P.; Wang, X.; Wang, X. F.; Wang, Y.; Wang, Y. F.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wang, Z.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, H. W.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, S. Y.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xing, T. Y.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, W.; Xu, X. P.; Yan, F.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, R. X.; Yang, S. L.; Yang, Y. H.; Yang, Y. X.; Yang, Y.; Yang, Z. Q.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, X. Q.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. F.; Zhang, T. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, L.; Zhao, L.; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, L. P.; Zhou, Q.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X.; Zhou, X.; Zhu, A. N.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, W. J.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2413826
Citazioni
ND
2
4
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.