Polymer-derived carbon can serve as an electrode material in multimodal neural stimulation, recording, and neurotransmitter sensing platforms. The primary challenge in its applicability in implantable, flexible neural devices is its characteristic mechanical hardness that renders it difficult to fabricate the entire device using only carbon. A microfabrication technique is introduced for patterning flexible, cloth-like, polymer-derived carbon fiber (CF) mats embedded in polyimide (PI), via selective reactive ion etching. This scalable, monolithic manufacturing method eliminates any joints or metal interconnects and creates electrocorticography electrode arrays based on a single CF mat. The batch-fabricated CF/PI composite structures, with critical dimension of 12.5 µm, are tested for their mechanical, electrical, and electrochemical stability, as well as to chemicals that mimic acute postsurgery inflammatory reactions. Their recording performance is validated in rat models. Reported CF patterning process can benefit various carbon microdevices that are expected to feature flexibility, material stability, and biocompatibility.

Flexible Bioelectronic Devices Based on Micropatterned Monolithic Carbon Fiber Mats

Zucchini E.;Fadiga L.;
2020

Abstract

Polymer-derived carbon can serve as an electrode material in multimodal neural stimulation, recording, and neurotransmitter sensing platforms. The primary challenge in its applicability in implantable, flexible neural devices is its characteristic mechanical hardness that renders it difficult to fabricate the entire device using only carbon. A microfabrication technique is introduced for patterning flexible, cloth-like, polymer-derived carbon fiber (CF) mats embedded in polyimide (PI), via selective reactive ion etching. This scalable, monolithic manufacturing method eliminates any joints or metal interconnects and creates electrocorticography electrode arrays based on a single CF mat. The batch-fabricated CF/PI composite structures, with critical dimension of 12.5 µm, are tested for their mechanical, electrical, and electrochemical stability, as well as to chemicals that mimic acute postsurgery inflammatory reactions. Their recording performance is validated in rat models. Reported CF patterning process can benefit various carbon microdevices that are expected to feature flexibility, material stability, and biocompatibility.
2020
Vomero, M.; Gueli, C.; Zucchini, E.; Fadiga, L.; Erhardt, J. B.; Sharma, S.; Stieglitz, T.
File in questo prodotto:
File Dimensione Formato  
admt.201900713.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2413239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact