The increasing interest in preserving of the archaeological sites requires the integration of a wide spectra of geophysical methodologies for field measurements. In fact, archaeological investigations need multidisciplinary studies to characterize the physical properties of near-surface. In this context, the integration of electromagnetic techniques seems to be one of the most suitable tools. The most suitable geophysical investigation techniques employed for archaeological purposes are the geomagnetic, GPR and resistivity/conductivity (DC and EM) methods. These techniques are not invasive and allow us to obtain high resolution images of subsurface, even if their use is dependent on site and resolution. In general, geomagnetic and EM methods are more adaptive for large survey, in order to obtain fast results with low resolution. On the contrary, GPR shows high resolution information, but for the heavy data process is adapt for small survey areas. The DC methods are not common then the previous ones, but their contribute is important above all in urban area. Anyway, the integration of different geophysical techniques is the best way for field measurements to identify the remains, because each geophysical technique has the ability to define a variation of the physical parameters (electrical conductivity, magnetic susceptibility, dielectric permittivity) which is able to highlight some pattern of the buried object. This kind of approach was applied in several archaeological site. Moreover, the geophysical contrast between archaeological features and surrounding soils sometimes are difficult to define due to problems of sensitivity and resolution related on the subsoil characteristics and limits of geophysical methods. The results obtained in real and laboratory study cases based on archaeogeophysical approach are here discussed.

Integrated Geophysical Techniques for Archaeological Remains: Real Cases and Full Scale Laboratory Example

Rizzo E.
Primo
;
2019

Abstract

The increasing interest in preserving of the archaeological sites requires the integration of a wide spectra of geophysical methodologies for field measurements. In fact, archaeological investigations need multidisciplinary studies to characterize the physical properties of near-surface. In this context, the integration of electromagnetic techniques seems to be one of the most suitable tools. The most suitable geophysical investigation techniques employed for archaeological purposes are the geomagnetic, GPR and resistivity/conductivity (DC and EM) methods. These techniques are not invasive and allow us to obtain high resolution images of subsurface, even if their use is dependent on site and resolution. In general, geomagnetic and EM methods are more adaptive for large survey, in order to obtain fast results with low resolution. On the contrary, GPR shows high resolution information, but for the heavy data process is adapt for small survey areas. The DC methods are not common then the previous ones, but their contribute is important above all in urban area. Anyway, the integration of different geophysical techniques is the best way for field measurements to identify the remains, because each geophysical technique has the ability to define a variation of the physical parameters (electrical conductivity, magnetic susceptibility, dielectric permittivity) which is able to highlight some pattern of the buried object. This kind of approach was applied in several archaeological site. Moreover, the geophysical contrast between archaeological features and surrounding soils sometimes are difficult to define due to problems of sensitivity and resolution related on the subsoil characteristics and limits of geophysical methods. The results obtained in real and laboratory study cases based on archaeogeophysical approach are here discussed.
2019
978-3-319-78860-9
978-3-319-78861-6
File in questo prodotto:
File Dimensione Formato  
978-3-319-78861-6_13_RIZZO.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2412832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact