We measured the triple coincidence A(e, e' np) and A(e, e' p p) reactions on carbon, aluminum, iron, and lead targets at Q(2) > 1.5 (GeV/c)(2), x(B) > 1.1 and missing momentum > 400 MeV/c. This was the first direct measurement of both proton-proton (pp) and neutron-proton (tip) short-range correlated (SRC) pair knockout from heavy asymmetric nuclei. For all measured nuclei, the average proton-proton (pp) to neutron-proton (np) reduced cross-section ratio is about 6%, in agreement with previous indirect measurements. Correcting for single-charge exchange effects decreased the SRC pairs ratio to similar to 3%, which is lower than previous results. Comparisons to theoretical generalized contact formalism (GCF) cross-section calculations show good agreement using both phenomenological and chiral nucleon-nucleon potentials, favoring a lower pp to np pair ratio. The ability of the GCF calculation to describe the experimental data using either phenomenological or chiral potentials suggests possible reduction of scale and scheme dependence in cross-section ratios. Our results also support the high-resolution description of high-momentum states being predominantly due to nucleons in SRC pairs.
Direct Observation of Proton-Neutron Short-Range Correlation Dominance in Heavy Nuclei
Ciullo G.;Contalbrigo M.;Lenisa P.;Movsisyan A.;
2019
Abstract
We measured the triple coincidence A(e, e' np) and A(e, e' p p) reactions on carbon, aluminum, iron, and lead targets at Q(2) > 1.5 (GeV/c)(2), x(B) > 1.1 and missing momentum > 400 MeV/c. This was the first direct measurement of both proton-proton (pp) and neutron-proton (tip) short-range correlated (SRC) pair knockout from heavy asymmetric nuclei. For all measured nuclei, the average proton-proton (pp) to neutron-proton (np) reduced cross-section ratio is about 6%, in agreement with previous indirect measurements. Correcting for single-charge exchange effects decreased the SRC pairs ratio to similar to 3%, which is lower than previous results. Comparisons to theoretical generalized contact formalism (GCF) cross-section calculations show good agreement using both phenomenological and chiral nucleon-nucleon potentials, favoring a lower pp to np pair ratio. The ability of the GCF calculation to describe the experimental data using either phenomenological or chiral potentials suggests possible reduction of scale and scheme dependence in cross-section ratios. Our results also support the high-resolution description of high-momentum states being predominantly due to nucleons in SRC pairs.File | Dimensione | Formato | |
---|---|---|---|
2019_PRL122_Direct_Obs_p_n_SRCD_in_heavy_n_Ciullo.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
291.34 kB
Formato
Adobe PDF
|
291.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PhysRevLett.122.172502-accepted.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
410.74 kB
Formato
Adobe PDF
|
410.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.