Mevalonate KinaseDeficiency (MKD) is a rare autosomal recessive inborn disorder of cholesterol biosynthesis caused bymutations in the mevalonate kinase (MK) gene, leading to MK enzyme decreased activity. The consequent shortage of mevalonate-derived isoprenoid compounds results in an inflammatory phenotype, caused by the activation of the NALP3 inflammasome that determines an increased caspase-1 activation and IL-1 release. In MKD, febrile temperature can further decrease the residual MK activity, leading to mevalonate pathway modulation and to possible disease worsening. We previously demonstrated that the administration of exogenous isoprenoids such as geraniol or the modulation of the enzymatic pathway with drugs, such as Tipifarnib, partially rescues the inflammatory phenotype associated with the defective mevalonic pathway. However, it has not been investigated yet how temperature can affect the success of these treatments. Thus, we investigated the effect of temperature on primary human monocytes from MKD patients. Furthermore the ability of geraniol and Tipifarnib to reduce the abnormal inflammatory response, already described at physiological temperature in MKD, was studied in a febrile condition.We evidenced the role of temperature in the modulation of the inflammatory events and suggested strongly considering this variable in future researches aimed at finding a treatment for MKD.

Mevalonate Kinase Deficiency (MKD) is a rare autosomal recessive inborn disorder of cholesterol biosynthesis caused by mutations in the mevalonate kinase (MK) gene, leading to MK enzyme decreased activity. The consequent shortage of mevalonate-derived isoprenoid compounds results in an inflammatory phenotype, caused by the activation of the NALP3 inflammasome that determines an increased caspase-1 activation and IL-1β release. In MKD, febrile temperature can further decrease the residual MK activity, leading to mevalonate pathway modulation and to possible disease worsening. We previously demonstrated that the administration of exogenous isoprenoids such as geraniol or the modulation of the enzymatic pathway with drugs, such as Tipifarnib, partially rescues the inflammatory phenotype associated with the defective mevalonic pathway. However, it has not been investigated yet how temperature can affect the success of these treatments. Thus, we investigated the effect of temperature on primary human monocytes from MKD patients. Furthermore the ability of geraniol and Tipifarnib to reduce the abnormal inflammatory response, already described at physiological temperature in MKD, was studied in a febrile condition. We evidenced the role of temperature in the modulation of the inflammatory events and suggested strongly considering this variable in future researches aimed at finding a treatment for MKD. © 2013 Paola Maura Tricarico et al.

Temperature and Drug Treatments in Mevalonate Kinase Deficiency: An Ex Vivo Study

Elisa Piscianz;Annalisa Marcuzzi
2013

Abstract

Mevalonate Kinase Deficiency (MKD) is a rare autosomal recessive inborn disorder of cholesterol biosynthesis caused by mutations in the mevalonate kinase (MK) gene, leading to MK enzyme decreased activity. The consequent shortage of mevalonate-derived isoprenoid compounds results in an inflammatory phenotype, caused by the activation of the NALP3 inflammasome that determines an increased caspase-1 activation and IL-1β release. In MKD, febrile temperature can further decrease the residual MK activity, leading to mevalonate pathway modulation and to possible disease worsening. We previously demonstrated that the administration of exogenous isoprenoids such as geraniol or the modulation of the enzymatic pathway with drugs, such as Tipifarnib, partially rescues the inflammatory phenotype associated with the defective mevalonic pathway. However, it has not been investigated yet how temperature can affect the success of these treatments. Thus, we investigated the effect of temperature on primary human monocytes from MKD patients. Furthermore the ability of geraniol and Tipifarnib to reduce the abnormal inflammatory response, already described at physiological temperature in MKD, was studied in a febrile condition. We evidenced the role of temperature in the modulation of the inflammatory events and suggested strongly considering this variable in future researches aimed at finding a treatment for MKD. © 2013 Paola Maura Tricarico et al.
2013
Maura Tricarico, Paola; Kleiner, Giulio; Piscianz, Elisa; Zanin, Valentina; Monasta, Lorenzo; Crovella, Sergio; Marcuzzi, Annalisa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2411779
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact