The prediction of the time evolution of gas turbine performance is an emerging requirement of modern prognostics and health management (PHM), aimed at improving system reliability and availability, while reducing life cycle costs. In this work, a data-driven Bayesian Hierarchical Model (BHM) is employed to perform a probabilistic prediction of gas turbine future health state thanks to its capability to deal with fleet data from multiple units. First, the theoretical background of the predictive methodology is outlined to highlight the inference mechanism and data processing for estimating BHM predicted outputs. Then, BHM is applied to both simulated and field data representative of gas turbine degradation to assess its prediction reliability and grasp some rules of thumb for minimizing BHM prediction error. For the considered field data, the average values of the prediction errors were found to be lower than 1.0 % or 1.7 % for single- or multi- step prediction, respectively.

Gas turbine health state prognostics by means of Bayesian hierarchical models

Losi E.
Primo
;
Venturini M.
Secondo
;
Manservigi L.
Ultimo
2019

Abstract

The prediction of the time evolution of gas turbine performance is an emerging requirement of modern prognostics and health management (PHM), aimed at improving system reliability and availability, while reducing life cycle costs. In this work, a data-driven Bayesian Hierarchical Model (BHM) is employed to perform a probabilistic prediction of gas turbine future health state thanks to its capability to deal with fleet data from multiple units. First, the theoretical background of the predictive methodology is outlined to highlight the inference mechanism and data processing for estimating BHM predicted outputs. Then, BHM is applied to both simulated and field data representative of gas turbine degradation to assess its prediction reliability and grasp some rules of thumb for minimizing BHM prediction error. For the considered field data, the average values of the prediction errors were found to be lower than 1.0 % or 1.7 % for single- or multi- step prediction, respectively.
2019
Losi, E.; Venturini, M.; Manservigi, L.
File in questo prodotto:
File Dimensione Formato  
131bis.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.64 MB
Formato Adobe PDF
5.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2410878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 11
social impact