Although one of the most evident effects of biological invasions is the loss of native taxonomic diversity, contrasting views exist on the consequences of biological invasions on native functional diversity. We investigated this topic using Mediterranean stream, river and canal fish communities as a test case, at 3734 sites in Italy, and distinguishing between exotic and translocated species invasion in three different faunal districts. Our results clearly confirmed that introduced species were widespread and in many cases the invasion was severe (130 communities were completely composed by introduced species). Exotic and translocated fish species had substantially different geographical distribution patterns, perhaps arising from their differences in introduction timing, spread and invasion mechanisms. We also found a clear decreasing trend of functional dispersion along an invasion gradient, confirming our hypothesis that the invasion process can diminish the relative diversity of ecofunctional traits of host fish communities. Furthermore, our results suggested that exotic species might have a greater negative effect than translocated species on the relative diversity of ecofunctional traits of fish communities. This could also be linked to the fact that translocated species are more ecofunctionally similar to native ones, compared to the exotics. Our multivariate analysis of site-specific combinations of ecofunctional traits highlighted some traits characteristic of all invaded communities, while our discriminant analysis underlined how there was a substantial ecofunctional overlap between native, exotic and translocated species groups in most areas.

The role of species introduction in modifying the functional diversity of native communities

Milardi M
Primo
;
Gavioli A
Secondo
;
Soana E;Lanzoni M;Fano EA
Penultimo
;
Castaldelli G
Ultimo
2020

Abstract

Although one of the most evident effects of biological invasions is the loss of native taxonomic diversity, contrasting views exist on the consequences of biological invasions on native functional diversity. We investigated this topic using Mediterranean stream, river and canal fish communities as a test case, at 3734 sites in Italy, and distinguishing between exotic and translocated species invasion in three different faunal districts. Our results clearly confirmed that introduced species were widespread and in many cases the invasion was severe (130 communities were completely composed by introduced species). Exotic and translocated fish species had substantially different geographical distribution patterns, perhaps arising from their differences in introduction timing, spread and invasion mechanisms. We also found a clear decreasing trend of functional dispersion along an invasion gradient, confirming our hypothesis that the invasion process can diminish the relative diversity of ecofunctional traits of host fish communities. Furthermore, our results suggested that exotic species might have a greater negative effect than translocated species on the relative diversity of ecofunctional traits of fish communities. This could also be linked to the fact that translocated species are more ecofunctionally similar to native ones, compared to the exotics. Our multivariate analysis of site-specific combinations of ecofunctional traits highlighted some traits characteristic of all invaded communities, while our discriminant analysis underlined how there was a substantial ecofunctional overlap between native, exotic and translocated species groups in most areas.
2020
Milardi, M; Gavioli, A; Soana, E; Lanzoni, M; Fano, Ea; Castaldelli, G
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0048969719343554-main.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
j.scitotenv.2019.134364.pdf

accesso aperto

Descrizione: Post-print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2409619
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact