The resonant structure of the doubly Cabibbo-suppressed decay D + →K − K + K + is studied for the first time. The measurement is based on a sample of pp-collision data, collected at a centre-of-mass energy of 8 TeV with the LHCb detector and corresponding to an integrated luminosity of 2 fb −1 . The amplitude analysis of this decay is performed with the isobar model and a phenomenological model based on an effective chiral Lagrangian. In both models the S-wave component in the K − K + system is dominant, with a small contribution of the ϕ(1020) meson and a negligible contribution from tensor resonances. The K + K − scattering amplitudes for the considered combinations of spin (0,1) and isospin (0,1) of the two-body system are obtained from the Dalitz plot fit with the phenomenological decay amplitude.
Dalitz plot analysis of the D + → K − K + K + decay
Calabrese, R.;Capriotti, L.;Fiorini, M.;Luppi, E.;Minzoni, L.;Pappalardo, L. L.;Skiba, I.;Tomassetti, L.;
2019
Abstract
The resonant structure of the doubly Cabibbo-suppressed decay D + →K − K + K + is studied for the first time. The measurement is based on a sample of pp-collision data, collected at a centre-of-mass energy of 8 TeV with the LHCb detector and corresponding to an integrated luminosity of 2 fb −1 . The amplitude analysis of this decay is performed with the isobar model and a phenomenological model based on an effective chiral Lagrangian. In both models the S-wave component in the K − K + system is dominant, with a small contribution of the ϕ(1020) meson and a negligible contribution from tensor resonances. The K + K − scattering amplitudes for the considered combinations of spin (0,1) and isospin (0,1) of the two-body system are obtained from the Dalitz plot fit with the phenomenological decay amplitude.File | Dimensione | Formato | |
---|---|---|---|
Aaij2019_Article_DalitzPlotAnalysisOfTheDKKKDec.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.